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ABSTRACT

We investigate  two  causes  for  the  instability  of  traffic  flow:  The  time  lag  caused  by  finite 
accelerations of the vehicles,  and the delay caused by the finite reaction times of the drivers. 
Furthermore, we simulate to which degree drivers may compensate for these delays by looking 
several vehicles ahead and anticipate future traffic situations. Since vehicular traffic flow is an 
extended multi-particle system with many degrees of freedom, two concepts of linear stability have 
to be considered: Local stability of a car following a leader that drives at constant velocity, and 
string (chain) stability of a ‘platoon’ of several vehicles following each other. Typically, string 
stability is a much more restrictive criterion than local stability. We simulate both types of stability 
with the Human Driver Model [M. Treiber  et al., Physica A, Vol. 360 (1), 71-88 (2006)], which 
includes all the features above. We found several interesting results: (i) with a suitable anticipation, 
we  obtained  string  stability  for  reaction  times  exceeding  the  safety  time  gap,  which,  to  our 
knowledge, has not yet been obtained for any other car-following model; (ii) parameter changes 
that  destabilize the model variant with zero reaction time may stabilize the model  with finite 
reaction times and vice versa, (iii) distributed reaction times (every driver has a different reaction 
time) can stabilize the system compared to drivers with identical reaction times that are equal to 
the mean. 
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INTRODUCTION
Modelling  of  human driving  behavior  is  a  controversial  topic  in  traffic  science  (1,2,3).  It  is 
obvious,  however,  that  an  essential  feature  of  human (in  contrast  to  automated)  drivers  is  a 
considerable  reaction  time,  which  is  a  consequence  of  the  physiological  aspects  of  sensing, 
perceiving, deciding, and performing an action (4). This complex reaction time T ′  is of the order 
of  1.2 s (5).  In addition,  it  varies strongly between different drivers (age,  gender),  different 
stimuli, and different studies (cf. the review of human perception-brake reaction time studies (5)). 

Remarkably,  in  dense  (not  yet  congested)  traffic,  the  modal  value  in  the  time  gap 
distribution (which is the most probable value) on Dutch or German freeways are around 0.9 s 
(6,7), i.e.,  below the average value of the reaction time. This has to be compared with the linear 
stability results of simple car-following models which become unstable if the reaction time exceeds 
half the value of the time gap (8,9). In such models, the acceleration depends, in general, on the 
own velocity, and the distance and velocity difference to the previous vehicle which are the input 
variables of automated driving systems, sometimes called ‘adaptive cruise control’ (ACC) (11,12). 
Reaction times are most commonly modelled by introducing a dead time (time delay) T ′ between 
the accelerating or braking action of the driver, and the input stimuli to which a driver reacts 
(8,12,13). 

Clearly, human drivers take into account more input variables to overcome the stability 
limit mentioned above. For example, unlike machines, human drivers routinely scan the traffic 
situation several  vehicles  ahead  and anticipate  future  traffic  situations  leading,  in  turn,  to  an 
increased stability. 

The different stabilizing and destabilizing factors of the driver’s behavior and the vehicle 
dynamics constitute a nonlinear feedback control system and can be visualized in a flow diagram 
(Fig. 1). The instability of traffic flow is caused by the delay the system needs to respond to a 
certain action of a controller (14,15). More specifically, the controllers are the drivers, the quantity 
to be controlled is the velocity of the own vehicle (or the distance to the preceding vehicle), the 
input  stimuli  are  the  observed  distances  and velocities,  respectively,  and the actions  to  reach 
desired velocities or distances consist in accelerating or braking (we do not consider lane changes 
here). The task of following a single vehicle can be modelled by a nonlinear controller containing a 
gain function (i.e., a car-following model without delay), and a dead-time or delay element. Since 
only the accelerations can be controlled, the control path contains one or two additional integrative 
elements. To include anticipation, additional (nonlinear) derivative elements are incorporated into 
the control path. 

For determining the linear local stability, one can apply standard methods of control theory 
to the linearized system yielding an upper limit of the reaction time T ′ , which decreases with the 
sensitivity of the car-following model, i.e.,  how much it accelerates (decelerates) if  the actual 
distance is too large (small). However, it is well known in traffic theory for car-following models 
with zero reaction time (16,3),  and also for  macroscopic models  (17),  that  small  sensitivities 
(acceleration capabilities)  increase the linear string instability if a platoon of  several vehicles is 
considered,  i.e.,  the  perturbations  will  amplify  while  propagating  downstream  the  chain  of 
vehicles. Typically,  string or  collective stability is a much more restrictive criterion than local 
stability.  The  regime of  string  instability  can  be  further  divided  into  a  region  of  convective 
instability where perturbations grow but finally are convected out of the system (cf., e.g., Fig. 2 
below), and a region of absolute instability. 
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In this contribution, we investigate, by means of simulation, the influence of (i) reaction 
times, (ii) acceleration capabilities, (iii) temporal anticipation, and (iv) multi-vehicle look-ahead on 
the stability of traffic flow. We discuss how the influencing factors mentioned above change local 
stability, string stability, and the limits where the traffic flow is accident-free. 

In the following section, we present the models used for the simulation. The Intelligent 
Driver  Model  (IDM) (16)  will  be  used  as  instantaneous  nonlinear  controller  representing  the 
characteristics of automated driving. Its sensitivity is characterized by the acceleration parameter 
a . The recently proposed Human Driver Model (HDM) (18) is based on the IDM and implements 
the additional human-specific properties (reaction times and anticipations) in a systematic way. 
Later on, we give the results and show how each of the effects mentioned above influences the 
traffic  dynamics.  With  a  suitable  anticipation,  we  obtained  string  stability  for  reaction  times 
exceeding the ‘safety time gap’, which, to our knowledge, has not yet been obtained for any other 
car-following model.  Furthermore,  we show how the different influences of reaction time and 
acceleration capability on local and string stability lead to an optimal  range of the acceleration 
parameter a  rather than a lower limit as proposed in the literature up to now. Finally, we simulate, 
for the first time, distributed (i.e., varying) reaction times. We conclude with a discussion of the 
results. 

MICROSCOPIC TRAFFIC MODEL WITH TIME DELAY AND ANTICIPATION
Most microscopic traffic models describe the instantaneous acceleration and deceleration of each 
individual ‘driver-vehicle unit’ as a function of the distance and velocity difference to the vehicle 
in front and on the own velocity (3). The subclass of time-continuous microscopic models (car-
following models) is of the general form 

,v,v,sa=
v

ααα
α )Δ(

dt

d mic (1)

where the own velocity αv , the net distance αs , and the velocity difference αvΔ  to the leading 
vehicle  serve  as  stimuli  determining  the  acceleration  mica .  This  class  of  basic  models  is 
characterized by (i) instantaneous reaction, (ii) reaction only to the immediate predecessor, and (iii) 
infinitely exact estimating capabilities of drivers regarding the input stimuli  s ,  v , and  vΔ , 
which also means that there are no fluctuations, i.e., drivers react always the same to the same 
stimuli. In some sense, such models describe driving behavior similar to adaptive cruise control 
(ACC) systems (10,11). 

In the context of control theory, the acceleration is the action to bring (i) the own velocity 
αv  towards the desired velocity  0v  if there is no obstruction from other vehicles, and to the 

velocity  1−αv  of  the  predecessor  otherwise,  (ii)  the  observed  distance  αs  towards  the 

equilibrium distance )( 1−αe vs . Of course, this condition is only relevant in case of obstruction. 

For models of the form (1), the equilibrium distance function )(vse  is given by 

0.)0(mic =v,,sa e (2)

In general, the control function mica  is strongly nonlinear, and there is a smooth transition 
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from the control targets for unobstructed traffic to that of obstructed traffic. Notice that ‘obstructed 
traffic’ (i.e., it is not possible to drive at the desired velocity) does not necessarily mean ‘congested 
traffic’. 

In the following, we introduce the Intelligent Driver Model (IDM) (16), which is a simple 
car-following model with intuitive parameters. Furthermore, we present three aspects of human 
driving  behavior:  (i)  finite  reaction  times,  (ii)  temporal  anticipation,  and  (iii)  looking  several 
vehicles ahead (spatial anticipation). These extensions are formulated in a systematic way and 
apply to all underlying models of the form (1) (18). 

The Intelligent Driver Model (IDM)
The IDM acceleration of each vehicle  α  is a continuous function of the velocity  αv , the net 

distance gap αs , and the velocity difference (approaching rate) αvΔ  to the leading vehicle: 

.
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The IDM acceleration consists of a free acceleration ])(1[ 4
0

free vva=v −  (with v  indicating 

the time derivative) for approaching the desired velocity 0v  with an acceleration slightly below 

a , and the braking interaction 2*int )( ssa=v − , where the actual gap αs  is compared with the 
‘desired minimum gap’ 

,
ab

vv
+vT+s=vv,s

2

Δ
)Δ( 0

*
(4)

which is specified by the sum of the minimum distance 0s , the velocity-dependent safety distance 
vT  corresponding to the time gap  T , and a dynamic part. The dynamic part implements an 
accident-free ‘intelligent’ braking strategy that, in nearly all situations, limits braking decelerations 
to  the  ‘comfortable  deceleration’  b .  Notice  that  all  five  IDM parameters  have  an  intuitive 
meaning. The parameters used henceforth (unless stated otherwise) are listed in Table 1. By an 
appropriate scaling of space and time, the number of parameters can be reduced from five to three. 

The IDM has been calibrated to empirical data of several German freeways (16). On a 
more microscopic level, the IDM was tested together with other microscopic models (19). While 
all models showed large residual errors, the IDM was one of the best. Furthermore, using the same 
parameters as in Table 1 (apart from obvious changes for the desired velocity) both the simulated 
acceleration behaviour from a standstill and deceleration behaviour to a standstill were remarkably 
close to empirical observations, cf. (20) and (21). 

Finite Reaction Time
A reaction time  T ′  is implemented simply by evaluating the right-hand side of Eq. (1) at time 

Tt ′− .  If  T ′  is not a multiple of the update time interval,  we propose a linear interpolation 
according to 
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,xβ+βx=Ttx ntnt −−− −′− )1()( 1 (5)

where x  denotes any quantity on the right-hand side of Eq. (1) such as αs , αv , or αvΔ , and 

ntx −  denotes this quantity taken n  time steps before the actual step. Here, n  is the integer part 
of tT ′ , and the weight factor of the linear interpolation is given by ntT=β −′ . We emphasize 
that all input stimuli αs , αv , and αvΔ  are evaluated at the delayed time. 

Notice  that  the  reaction  time  T ′  is  sometimes  set  equal  to  the  safety  time gap  T . 
However, it is essential to distinguish between these times conceptually. While the time gap T  is 
a characteristic parameter of the driving style, the reaction time T ′  is essentially a physiological 
parameter and, consequently, at most weakly correlated with T . We point out that both the time 
gap T  and the reaction time T ′  are to be distinguished from the numerical update time step t , 
which is sometimes erroneously interpreted as a reaction time as well. 

Temporal Anticipation
We will  assume that  drivers  are  aware  of  their  finite  reaction time and anticipate  the  traffic 
situation accordingly. Besides anticipating the future distance (13), we will anticipate the future 
velocity using a  constant-acceleration heuristics. The combined effects of a finite reaction time, 
and temporal anticipation lead to the following input variables for the underlying car-following 
model (1): 

)Δ(
dt

d mic
ααα v,v,sv=

vα ′′′ (6)

with 
,vTs=ts Ttααα ′−′−′ ]Δ[)( (7)

,vT+v=tv Ttααα ′−′′ ][)(  (8)
and 

.)(Δ)(Δ Ttv=tv αα ′−′ (9)

Notice that in Eq. (8) the time delay occurs in the acceleration v  as the highest derivative, i.e., the 
linearized model is of neutral type. We did not apply the constant-acceleration heuristics for the 
anticipation of the future velocity difference, or the future distance, as the accelerations of other 
vehicles cannot be estimated reliably by human drivers.  Instead,  we have applied the simpler 
constant-velocity heuristics for these cases. Notice that the proposed heuristics are parameter-free. 

These ‘anticipative’ terms include derivative quantities (the accelerations),  and velocity 
differences. In the framework of control theory, they act as nonlinear derivative elements in the 
control path. 

Spatial Anticipation for Several Vehicles Ahead
Let us now split up the acceleration of the underlying microscopic model into a single-vehicle 
acceleration on a nearly empty road depending on the considered vehicle α  only, and a braking 
deceleration taking into account the vehicle-vehicle interaction with the preceding vehicle: 
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.)Δ(:)Δ( intfreemic
ααααααα v,v,sv+v=v,v,sv  (10)

This splitting up is motivated by the concept of a ‘social force model’ which is underlying the IDM 
and the HDM. In this concept there are several forces such as a ‘driving force’ to accelerate to the 
desired velocity and repulsive forces caused by the front vehicles (18). Next, we model the reaction 
to several vehicles ahead just by summing up the corresponding vehicle-vehicle pair interactions 

int
βv  from vehicle β  to vehicle α  for the an  nearest preceding vehicles β : 

,v+v=
v α

anα=β
αβα

α ∑
−

−

1
intfree

dt

d
 (11)

where all distances, velocities and velocity differences on the right-hand side are given by Eqs. (7) 
– (9). Each pair interaction between vehicle α  and vehicle β  is specified by
 

,vv,v,sv=v βαααβαβ )(int − (12)
where 

∑
α

+β=j
jαβ s=s

1

(13)

is the sum of all net gaps between the vehicles α  and β . For the IDM, there exists a closed-form 
solution of the multi-anticipative equilibrium distance as a function of the velocity. Notice that in 
the  limiting  case  of  anticipation  to  arbitrary  many  vehicles  we  obtain 

1.2836∞lim =π=)γ(na
an →  for the IDM. This means that the combined effects of all non-

nearest-neighbor interactions would lead to an increase of the equilibrium distance by just about 
28% (18). 

In summary, the HDM consists of all extensions of the underlying car-following model 
described  in  the  sections  above.  The  HDM was  tested  against  empirical  one-minute  data  of 
German freeways (18) and it was found that it described the observed spatiotemporal structures of 
congested traffic. Particularly, the transitions between free and congested traffic were smoother 
than in the IDM, in agreement with the empirical results. 

MICROSCOPIC TRAFFIC SIMULATIONS OF VEHICLE PLATOONS
We investigate the string stability by simulating a platoon of vehicles following an externally 
controlled lead vehicle. As initial conditions, we assume the platoon to be in equilibrium, i.e., the 
initial velocities of all platoon vehicles are equal to  leadv  and the gaps equal to  )( leadvse , 
cf. Eq. (2), so that the initial model accelerations are equal to zero. 

The externally controlled vehicle drives at 25lead =v m/s for the first 1000 s, before it 
decelerates with  2− m/s2 for  3 s, which is a realistic scenario in daily traffic situations. This 
braking  maneuver  reduces  the  velocity  to  19lead =v m/s,  which  is  kept  constant  until  the 
simulation ends at 2500=t s. This braking maneuver serves as perturbation for all simulations 
throughout this paper. Notice that the nonlinear dynamics resulting from this  finite perturbation 
cannot be handled by linearization anymore. 
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In  all  simulations,  we  have  used  an  explicit  integration  scheme  assuming  constant 
accelerations between each update time interval tΔ  according to

 

2)Δ)((
2

1
Δ)()()Δ(

Δ)()()Δ(

ttv+ttv+tx=t+tx

t,tv+tv=t+tv

αααα

ααα





(14)

The update time interval is set to 0.1Δ =t s. We will use the IDM parameters given in Table 1 
unless stated otherwise. If an  is larger than the number of preceding vehicles (which can happen 

for the first vehicles of the platoon) then an  is reduced accordingly. Furthermore, we restrict the 
maximum braking deceleration to 9m/s2, which is the physical limit on dry roads. 

Stability Boundaries for a Platoon of Vehicles
We distinguish three stability regimes: (i) string stability, i.e., all perturbations introduced by the 
deceleration of the lead vehicles are damped away, (ii) an oscillatory regime, where perturbations 
increase but do not lead to collisions, and (iii) an instability with accidents. The condition for a 
simulation to be in the crash regime (iii) is fulfilled if there is some time t  and some vehicle α  
so that  0)( <tsα . The condition for string stability is fulfilled if  | | 3)( <tvα m/s2 at  all times 
(including the period where the leading vehicle decelerates) and for  all vehicles. Additionally, 
string  stability  requires  that,  for  sufficiently  long  times  after  the  braking  maneuver,  the 
accelerations of all vehicles converge to zero. Finally, if neither the conditions for the crash regime 
nor that for the stable regime are fulfilled, the simulation result is attributed to the oscillatory 
regime. 

Figure 3 shows the three stability regimes as a function of the reaction time T ′  and the 
platoon size n  for the following simulation scenarios: 

1. The first scenario with neither spatial anticipation ( 1=na ) nor temporal anticipation 
serves as reference. This case corresponds to the conventional IDM car-following model 
with finite reaction time. A platoon of 100 vehicles is stable for reaction times of up to 

0.91 =Tc′ s. Test runs with larger platoon sizes (up to 1000 vehicles) did not result in 
different thresholds suggesting that stability for a platoon size of 100 essentially means 
string stability for arbitrarily large platoon sizes. For reaction times 1.152 =T>T c′′ s, the 
collective instability leads to accidents, at least, when limiting the braking deceleration to 
9m/s2. 

2. The second scenario extends the reference scenario by implementing the parameter-free 
temporal anticipation. While the stability limit, 0.951 =Tc′ s, is only slightly increased 

with respect to scenario (1), the collision limit 1.42 =Tc′ s is increased significantly. 

3. The third simulation scenario implements the spatial anticipation by looking 4=na  

vehicles ahead as extension compared to the reference case 1=na . This spatial 

anticipation increases the stability and shifts both boundaries, 1cT ′  and 2cT ′  to 
significantly higher values. 

4. The forth scenario combines temporal and spatial anticipation ( 4=na ), which leads to the 
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most stable system. Particularly, the second boundary is shifted to values of 22 ≥′cT s. 
Remarkably, the simulation shows that, with a suitable anticipation, we could obtain 
collision-free traffic for reaction times exceeding the safety time gap of 1.5=T s. Further 
increasing the number of anticipated vehicles an  does not change the thresholds 
significantly.

So far, we have assumed constant and identical reaction times T=T ′′α  for all vehicles α  in the 
simulation. Since the human reaction time varies strongly depending on the concrete situation and 
between different persons (5), we also investigate the role of distributed reaction times, i.e., every 
driver  has  a  different  reaction  time  αT ′ with  the  mean  value  T=T ′′α .  To  this  end,  we 
generalize the concept of linear interpolation of Eq. (5) to individual delays for each driver-vehicle 
unit α . 

Figure 4 shows the simulation results for several simulation runs for the reference scenario 
(1) without anticipation and the scenario (4) with temporal and spatial anticipation. The reaction 
time  has  been  uniformly  distributed  within  a  range  of  30± %  around  the  mean  value. 
Interestingly, the phase boundary  1cT ′  between the stable and oscillatory regime is nearly not 

affected by the variation of the reaction time. The phase boundary 2cT ′  for the forth scenario is 
even slightly shifted towards higher stability for platoon sizes of 70≥n  vehicles. However, the 
critical value 1cT ′  is slightly reduced when dealing with non-identical reaction times. In summary, 
distributed reaction times have a  remarkably low influence on the stability of  traffic  flow. In 
particular,  the  expected  stability  increased  by  destructive  interference  of  the  different 
eigenfrequencies of the observations has not been observed. 

Role of Vehicle Acceleration
As mentioned in the introduction, there are basically two different sources of instability for traffic 
flow:  The  finite  reaction  time modelled  by  the  HDM parameter  T ′ ,  and  finite  acceleration 
capabilities modelled by the IDM parameter a , which gives the maximum acceleration. Clearly, 
stability  always  decreases  when  T ′  increases.  In  this  subsection,  we  investigate  how  the 
acceleration parameter a  influences the instability mechanisms and come to the remarkable result 
that stability reaches its maximum for a certain range of values for  a  (that depends on  T ′ ). 
Traffic flow becomes more unstable if the value of a  is higher or lower than this range. 

Figure 2 (left column) shows time series of the acceleration of some selected vehicles for 
scenario  (1)  with  0.9=T ′ s,  and  the  acceleration  parameter  changed  from  2 m/s2 to  the 
approximatively ‘optimal’ value 1m/s2. The system is string stable: the initial perturbation of 2
m/s2 dissipates quickly. In the right column of Fig. 2, the acceleration parameter is lowered from 
1m/s2 to 0.3=a m/s2. The effect is as expected (16,17): The initial perturbation decreases for 
the first few vehicles (the system is locally stable), before it increases again for the next vehicles, 
and finally leads to a traffic breakdown in the neighborhood of vehicle 100 at a simulated time 

1250≈t s: The system is string unstable. After the first breakdown, further stop-and-go waves 
develop (not shown here). 

Remarkably,  the  system  becomes  unstable  as  well  when  increasing the  acceleration 
capability from the reference value  1m/s2 to  2.5=a m/s2  as shown in Fig. 5. The instability 
mechanism, however, is different. For low values of a , the traffic breakdown is initially triggered 
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by a long-wavelength instability as can be seen in the plots for the cars 10 and 50 of Fig. 2 (right 
column), before additional shorter oscillations appear immediately before the breakdown (vehicles 
80 and 100). In contrast, the initial instability for high values of a  has its maximum growth rates 
at shorter frequencies (of about 4 s), which can be seen from Fig. 5 for the vehicle sequence 4, and 
50 leading to the first stop-and-go wave, and the sequence 50, 70, leading to the second one. 
Further stop-and-go waves develop at later times for vehicles further upstream. Interestingly, the 
period of the resulting stop-and-go waves is about the same for the high-wavelength, and low-
wavelength mechanisms to instability. 

DISCUSSION AND CONCLUSIONS
In this contribution, we have investigated two causes for the instability of traffic flow, the time lag 
caused by finite accelerations of the vehicles, and the delay caused by the finite reaction time of the 
drivers. Furthermore, we have simulated to which degree drivers may compensate for these delays 
by looking several vehicles ahead and anticipate future traffic situations. 

Since vehicular traffic flow is a multi-particle system with many degrees of freedom, two 
concepts of linear stability have to be considered: Local stability of a car following a leader that 
drives  at  constant  velocity,  and  string  or  collective  stability  of  a  platoon of  several  vehicles 
following each other.  Typically,  string stability is  a much more restrictive criterion than local 
stability. 

Our  main  results  are:  (i)  By  means  of  simulation,  we  determined  the  string  stability 
boundaries as a function of the reaction time T ′  for a variable platoon size of vehicles. With a 
suitable spatial and temporal anticipation, we obtained string stability for reaction times near the 
safety time gap, which, to date, has not yet been obtained for any other car-following model. (ii) 
When varying the maximum acceleration capability, we come to the remarkable result that stability 
reaches its maximum for a certain range of values for a  (that depends on the reaction time T ′ ). 
Traffic flow becomes more unstable if the value of the maximum acceleration is higher or lower 
than  this  value.  This  can  be  understood  by  the  interplay  between  the  two  mechanisms  to 
instabilities: If the value of  T ′  and a  are both comparatively high, then the ratio between the 
reaction time and the time scale avτ 0≈  of velocity changes is high leading to instabilities on 
the level of individual vehicles. Conversely, for low values of a , the lag time scale τ  itself leads 
to the well-known collective instabilities already observed for zero reaction time. (iii) Distributed 
reaction times, i.e., every driver has a different reaction time, can stabilize the system compared to 
drivers with identical reaction times that are equal to the mean. Generally, however, the effect 
introduced by the heterogeneity among drivers is small. 

We checked if these results are robust with respect to parameter changes and found no 
qualitative  difference  for  other  parameter  sets  within  a  reasonable  range.  For  example,  when 
changing the time gap from 1.5=T s to 0.9=T s (cf. the Introduction), the stability thresholds 

1cT ′  and 2cT ′  reduce proportionally, i.e., 1cT ′  remains typically of the order of or slightly below 

T  while  TTc >′2 . Preliminary results show that the results are also robust when applying the 
HDM to other car-following models. 
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TABLE 1  Parameters of the Intelligent Driver Model (IDM) with the values used in this 
paper unless stated otherwise. The IDM is used together with an explicit reaction time T ′ , 
temporal anticipation, and spatial anticipation. The vehicle length is 5 m. Furthermore, we 
restrict the maximum braking deceleration to 9m/s2 as the physical limit on dry roads. 

FIGURE 1  Flow diagram of the elements of the nonlinear feedback loop representing the 
actions of the driver and the vehicle dynamics. 

FIGURE 2  Time series of the acceleration for selected platoon vehicles for simulations with 
the  IDM parameter for the  maximum acceleration  set  to  1=a m/s2 (left  column),  and 

0.3=a m/s2 (right column). In both cases, the reaction time is 0.9′ =T s, and the drivers 
use temporal anticipation but no spatial anticipation ( 1=na ). The first vehicle induces a 
perturbation due to the braking maneuver at 1000=t s. For 1=a m/s2, the is string stable, 
while it is unstable for 0.3=a m/s2. 

FIGURE 3  String stability regimes of a platoon of identical vehicles as a function of the 
platoon size and the reaction time T ′  for the scenarios (1) - (4) described in the text. The 
graph (a) depicts scenario (1) assuming conventional follow-the-leader behavior ( 1=na ) 

without temporal anticipation; (b) with temporal anticipation ( 1=na ) (scenario (2)); (c) 

reaction  to  4=na  vehicles  without  temporal  anticipation (scenario (3));  (d)  reaction  to 
4=na  vehicles with temporal anticipation (scenario (4)). In the diagrams (b)-(d), the first 

scenario of graph (a) is plotted with thin lines for purposes of comparison. The externally 
controlled first vehicle induced a finite perturbation. In the ‘stable’ phase, all perturbations 
are damped away. In the oscillatory regime, the perturbations increase, but do not lead to 
collision. 

FIGURE 4  String stability regimes of a platoon of vehicles  α  with different individual 
reaction times for three simulation runs with different random seeds. The reaction time αT ′ 

has been distributed uniformly within 30% around the mean value T=T ′′α . The diagram 
(a) refers to the scenario (1) with neither temporal nor spatial anticipation, while the diagram 
(b) corresponds to the forth scenario with temporal and spatial anticipation ( 4=na ). The 
thin lines display the phase boundaries for identical reaction times.  The variation of the 
reaction times leads to a remarkably unchanged stability boundary 1cT ′  between the stable 

and  oscillating  regime.  The  critical  boundary  2cT ′  is  even  slightly  increased  for  some 
platoons, see (b). 

FIGURE 5  Time series of the acceleration for the same scenario as in Fig. 2, but the IDM 
parameter  for  the  maximum acceleration  is  increased  to  2.5=a m/s2.  Again,  the  first 
vehicle induces a perturbation due to the braking maneuver at 1000=t s (not shown here). 
The increased acceleration parameter  a  in combination with the delayed reaction causes 
higher frequencies with periods about 4 s that finally trigger stop-and-go-waves of a much 
higher period (about 50 s). 
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TABLE 1  Parameters of the Intelligent Driver Model (IDM) with the values used in this 
paper unless stated otherwise. The IDM is used together with an explicit reaction time T ′ , 
temporal anticipation, and spatial anticipation. The vehicle length is 5 m. Furthermore, we 
restrict the maximum braking deceleration to 9m/s2 as the physical limit on dry roads. 

Parameter Value 
Desired velocity 0v  120 km/h 
Safety time gap T  1.5 s 
Jam distance 0s  2 m 
Maximum acceleration a 2.0 m/s2

Desired deceleration b  2.0 m/s2
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FIGURE 1  Flow diagram of the elements of the nonlinear feedback loop representing the 
actions of the driver and the vehicle dynamics. 
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FIGURE 2  Time series of the acceleration for selected platoon vehicles for simulations with 
the  IDM parameter for the  maximum acceleration  set  to  1=a m/s2 (left  column),  and 

0.3=a m/s2 (right column). In both cases, the reaction time is 0.9′ =T s, and the drivers 
use temporal anticipation but no spatial anticipation ( 1=na ). The first vehicle induces a 
perturbation due to the braking maneuver at 1000=t s. For 1=a m/s2, the is string stable, 
while it is unstable for 0.3=a m/s2. 
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FIGURE 3  String stability regimes of a platoon of identical vehicles as a function of the 
platoon size and the reaction time T ′  for the scenarios (1) - (4) described in the text. The 
graph (a) depicts scenario (1) assuming conventional follow-the-leader behavior ( 1=na ) 

without temporal anticipation; (b) with temporal anticipation ( 1=na ) (scenario (2)); (c) 

reaction  to  4=na  vehicles  without  temporal  anticipation (scenario (3));  (d)  reaction  to 
4=na  vehicles with temporal anticipation (scenario (4)). In the diagrams (b)-(d), the first 

scenario of graph (a) is plotted with thin lines for purposes of comparison. The externally 
controlled first vehicle induced a finite perturbation. In the ‘stable’ phase, all perturbations 
are damped away. In the oscillatory regime, the perturbations increase, but do not lead to 
collision. 
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FIGURE 4  String stability regimes of a platoon of vehicles  α  with different individual 
reaction times for three simulation runs with different random seeds. The reaction time αT ′

has been distributed uniformly within 30% around the mean value T=T ′′α . The diagram 
(a) refers to the scenario (1) with neither temporal nor spatial anticipation, while the diagram 
(b) corresponds to the forth scenario with temporal and spatial anticipation ( 4=na ). The 
thin lines display the phase boundaries for identical reaction times.  The variation of the 
reaction times leads to a remarkably unchanged stability boundary 1cT ′  between the stable 

and  oscillating  regime.  The  critical  boundary  2cT ′  is  even  slightly  increased  for  some 
platoons, see (b). 
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FIGURE 5  Time series of the acceleration for the same scenario as in Fig. 2, but the IDM 
parameter  for  the  maximum acceleration  is  increased  to  2.5=a m/s2.  Again,  the  first 
vehicle induces a perturbation due to the braking maneuver at 1000=t s (not shown here). 
The increased acceleration parameter  a  in combination with the delayed reaction causes 
higher frequencies with periods about 4 s that finally trigger stop-and-go-waves of a much 
higher period (about 50 s). 


