Chapter 7

Thermal fluctuations in
pattern-forming instabilities

Statistics is the physics of numbers.

P. Diaconis

Thermal fluctuations result from deterministic chaos in 1023 di-
mensions.

I. Rehberg

The material in this chapter has been published as Ref. [114]. Landau’s method
of hydrodynamic fluctuations is developed in a form suitable for pattern-forming
systems. The resulting scheme is applied to RBC, to Taylor-Couette flow and to
the SM of EHC. Using the WEM would lead to a factor of two (two critical left-
and right travelling modes instead of one stationary mode) that is cancelled by the
correlation time in the denominator of Eq. (7.41), which the WEM predicts to be
twice as long as in the SM (Chapter 6.4).

7.1 Introduction

Recent experiments in several hydrodynamic systems confirm that pattern-forming
instabilities in extended nonequilibrium systems exhibit some features reminiscent of
equilibrium-phase transitions. Fluctuations of the field variables become measurable
near threshold and both their amplitudes and the correlations in space and time
increase as one approaches the threshold. Two questions arise. Are the measured
fluctuations of internal origin, i.e., due to thermal or quantum-mechanical noise (the
latter is predominant in lasers [115]) or are they the result of external noise from the
experimental setup? Can one theoretically describe thermal fluctuations in pattern-
forming systems in an unified way, as in equilibrium systems? A positive answer
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98 Thermal fluctuations

to the second question means extending the theory of fluctuations near equilibrium
phase transitions [68] to nonequilibrium systems. If in addition the predictions are
confirmed by experiments as discussed in the Sections 5 and 6 of this chapter, it is
safe to say that one actually measured thermal fluctuations. Each additional source
would increase the fluctuations.

Theoretical predictions for the effects of thermal noise in pattern-forming systems
were given for Rayleigh-Bénard convection (RBC) in simple fluids [116, 117, 118]
and recently for RBC in binary mixtures [119], for electrohydrodynamic convection
(EHC) in nematic liquid crystals (NLC) [120] and for Taylor-Couette flow (TCF)
[121, 122, 123]. In all this work, the dynamical (macroscopic) equations are sup-
pplemented with stochastic terms accounting for the microscopic degrees of freedom
and determined from the assumption of local equilibrium. Near threshold the re-
sulting Langevin equations are reduced to a stochastic generalization of the usual
normal form equations. These equations are simple enough to be solved for the am-
plitude (and phase) fluctuations and may provide a basis for an unified description
of fluctuations of patterns in nonequilibrium systems. Once the amplitude fluctuati-
ons are known the determination of the fluctuations of the physical fields and their
measurable effects is straightforward.

The crucial assumption in this approach is that of local equilibrium in systems
which are typically far from global equilibrium. This implies that the external forces
driving the system out of equilibrium, e.g., shear, director rotation, electric and
magnetic fields, and also the ensuing fields of the macroscopic patterns, are small
compared to the internal fields effective on a molecular scale. In the hydrodynamic
regime this should be always fulfilled.

In the next two sections I describe the method in a form applicable to a large
class of pattern-forming systems including quasi one-dimensional (1D) and quasi two-
dimensional (2D) systems and the interesting case of symmetry-induced degeneracy
where several deterministic solutions become simultaneously unstable at the primary
threshold. In Section 4 T calculate the fluctuations of planar EHC and compare them
with fluctuations of RBC patterns in simple liquids and axisymmetric vortices in
TCF. Chapter 7.5 describes relevant experiments which are compared to the theory
in the last section.

7.2 Macroscopic stochastic equations for ther-
mal noise

With the assumption of local equilibrium one can use locally the fluctuation-dissipation
theorem (FDT) which essentially states that thermal fluctuations are always connec-
ted with dissipation and vice versa. So Istart by writing down the ensemble-averaged
entropy production of the macroscopic system as an integrated sum of products of
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Onsager forces and currents (summation over doubly occurring indices is implied)

(S) = /Vd?’r {Fa(r,t){(Ja(r,1))}. (7.1)

For macroscopic hydrodynamic systems near local equilibrium this quantity is ex-
tensive and the forces and ensemble-averaged currents, F, and (J,), are linearly
related,

(Jo) = MagFy := Jo — Ja, (7.2)
where M, are the components of the Onsager matrix M, given by the constitutive

materi%l equations. We allow for fluctuations ja of the currents, J, = (J,) + ja
with (J,) = 0, and will determine them with the FDT. Introducing auxiliary field
variables z,(r,t) by J, =z, (Ref. [68]) one can write the constitutive relations (7.2)

with fluctuations as Langevin equation for z,,

To= MugFs+ J,. (7.3)

Expressing the entropy S[z] = [,d°rs(x(r)) in terms of @ (2 is a shorthand for
all z,) and comparing the averaged entropy production (S [#]) = fvd3r%<ra>
s

with (7.1), one sees that the forces are the variables conjugate to z,, F, = 7>,

and (7.3) can be written in a "generalized potential form” z,= I QQ% + Ja.
For a given small volume element AV, around #, the corresponding Fokker-Planck
equation allows a canonical stationary distribution W, ,[2] o« e¥/*5 with S, =

Jay, @®rs(2(r)) = sAV,, if the probability currents are zero (detailed balance) and

the fluctuations are given by the fluctuation-dissipation theorem (J, (v, t)Jy(r', 1)) =
kp(Mug + Mg )(AV,)716,,.6(t — t') [68, 124]. In the continuum limit this becomes

(Jo(r, 1) Js(v' 1)) = kp(Mug 4+ Msa)o(r — v)6(t — 1). (7.4)

Thus the FDT is a consequence of the postulated canonical distribution. Note that
this ansatz implies the existence of "mesoscopic” volume elements which are large
enough so that the entropy can be treated as extensive quantity and small enough
to neglect spatial variations of the macroscopic fields.

Typical sources contributing to the density s of the entropy production (7.1) are

A0 (th)

related to the viscous flow and s related to thermal conductivity. In fluids

(el)

with finite electric conductivity there is a contribution s’ due to Ohmic heating,

and in NLCs an additional contribution 5 from the orientational relaxation of the

director field n(r,t) [72]. These sources are [120, 58, 125]

) (s) (n) _ (as)y .
T s th— 055 Vij, T s z_ —0;; 0,5, (75)
T 3( ): _%J(th) . VT, T ('S(e):j(el) . E
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where v;; = (0;v;+40;v;)/2 is the symmetrical fluid shear-rate tensor n;Q;; = n;(9;v;—
0;v;:)/2 4 (0 + v - V)n; is the rotation of the director relative to the moving fluid,
(s) _(as) - (th)

i >0y are the symmetric and antisymmetric parts of the stress tensor and j

and 7 are the dissipative parts of the heat and electric current. This list is not

g

complete; for example in binary mixtures there is an additional mixing-entropy term
proportional to the negative concentration gradient times the mass flux density of
one component, see e.g., [119, 126, 58].
There is some freedom in choosing the Onsager forces and currents. If one takes
as currents
{ay = (o), of? 3, 3 (7.6)

then the conjugate forces are

Fa:_a_a_‘a_
{}(T T T TT T

and the Onsager matrices can be found by comparing the dissipative part of the
constitutive material equations with the definitions of the currents and forces.
For NLCs the constitutive equations are (Chapter 2 and [57, 58])

O-z(;) Tnij kel TT]Z(;;CI 0 0 /T

o | | Tl Ty 0 0 — /T s
SN N 0 T2y —TAD —o,T/T? | :

i 0 0 - Tl E/T

with the NLC-Onsager matrix as first term on the right-hand side. The viscosity
tensor 1;; i, the rotational viscosity tensor v;; and the fluid-director coupling n}fil
contain a total of five independent coefficients (for n;; r see Eq. (2.20), for the other

tensors see Eq. (B1) in [120]). The thermal and electric conductivities A;;, and O'Z(;l)

and the Peltier coefficients )\Z(-Zl) are uniaxial tensors of the form A ;1 + Agning.

To get the noise terms of the macroscopic equations themselves, one identifies all
parts which may contain dissipative effects and writes them in terms of the Onsager
currents. Typically these equations, written in terms of the perturbations w(r,t) of
the macroscopic fields from the unstructured state, can be cast into the symbolic
form (the field variables w should not be confused with the auxiliary variables @ in

the derivation of the FDT),
SH(T, 1,00+ LV, 7, Ou(r,t) + N, V,0,0) = (1), (1.9)

with the noise term & to be determined. The linear matrix-differential operators
§R and éR and the nonlinear deterministic term IN depend on a control parameter
R and may depend explicitely on » if the basic state is nontrivial (e.g., in TCF or
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Non—Boussinesq RBC) or periodically on time in the case of periodic forcing as in
EHC. Recall from chapter 2 that the mascroscopic equations are either conservation
laws or balance equations for slowly relaxing variables or broken-symmetry variables;
the latter are e.g., director variations in NLC. The first class of equations contains
gradients of the currents (examples 1 and 2 below), the second one some linear
combination of the currents themselves. In both cases, the left-hand side of Eq.
(7.9) can be written symbolically as

(éRat + éR)u = —£<J> + conservative terms, (7.10)
where J contains all Onsager currents and D is a matrix-differential operator for
conservation laws and a matrix for other balance equations. The stochastic forces
are accordingly

&(r,1) = DJ(r,1). (7.11)

In summary, the Langevin equations (7.9) are a stochastic generalization of the
deterministic basic equations. The fluctuating forces & have zero mean and their
second moments are given in terms of D and the Onsager matrix M by (7.11) and
(7.4). M is defined via the constitutive material equations (Eqs. (7.8) for NLCs))
and D by the basic equations themselves (see examples below). Note that M and
D may depend on broken-symmetry variables and in addition M on scalar fields
(temperature etc.) of the basic equations, giving rise to multiplicative parts of &
in terms of the macroscopic field variables. As an example, the constitutive NLC

material tensors depend on the director m, which is also a macroscopic variable in
the EHC equations.
Now I give some examples for D.

1. Navier-Stokes equations for an incompressible fluid,

PO +v-V)o+Vp—V(a)—f,, = €M) All dissipative effects are contained
in Vg, which can be written (in Cartesian coordinates) as (Vg); = aj(aj( )

0'(-95)) = Di,jk(o']('z) + O'](-Zs)) with Di,jk = 6Z-k8j. Hence fl(v) = DL]]C(&](? + 5‘](28)>

Jt

2. Heat equation (conservation of energy) pmCo(0r +v - V)T +V - (3 (th)> £h)
Obviously D = —V and ¢ = — V. J( g

conservation equation.

. Things are analogous for the charge

3. Director equations in EHC (balance of local angular momentum), n x I" = 1388
where I' is the molecular field introduced by De Gennes [25]. Here the dissipa-
tive terms are not so obvious. They are proportional to the antlsymmetrlc part
of the stress tensor, (n x I'); = (n F)Ecom) + 62]k< > ie., f = —€ijk J](ZS)
[72, 120, 127], where €;;1 is the total-antisymmetric thlrd rank unity tensor.



102 Thermal fluctuations

7.3 Stochastic amplitude equations

Amplitude equations (normal forms), valid near threshold in systems with a conti-
nous bifurcation, are universal in a way that they only depend on the symmetries
of the pattern and on the quasi-dimensionality of the system. Stochastic ampli-
tude equations seem a natural way to generalize this universality to fluctuations of
patterns, and compare them to equilibrium fluctuations near continous phase tran-
sitions. We define as quasi-dimensionality D the number of dimensions (0, 1 or 2)
where the system is translationally invariant and infinite. Of course ”infinite” means
sufficiently large so that boundaries play no role; for stationary patterns this means a
system size much larger than the correlation length of the pattern; for travelling wa-
ves the precise conditions are not yet well understood, but seem to be more stringent
[9]. Denoting the infinite directions with r| and the other "perpendicular” directions
with r;, a space point is given for D = 2 by * = (1|, 7|2,711) and for D = 1 by
P = (7“||1,TL1,712). The r;-coordinates are allowed to be curvilinear. We will use
vector notation for r, 7, only if they explicitely have more than one component.

The symmetries of the correlations of the fluctuating pattern below threshold
are determined by the branches of the linear deterministic growth rate A(e, k) =
Re(e, k) — iw(e, k) for the modes uy, = eMe™ 1 fF(k,r,,t) becoming first unstable
at threshold, where f™ is periodic in ¢ in systems with periodic driving like AC-
driven EHC. The reduced control parameter ¢ = (R — R.)/R. and the threshold,
AMe=0,k.) = —iw,, are defined as usual. A bifurcation is stationary if w. = 0, and
degenerate if the growth rate of the critical branch becomes simultaneously unstable
around several k. values or if there are several critical dispersion branches, e.g.,
associated with a Hopf bifurcation (e = 0, k.) = +iw..

The amplitude equations are usually derived by a multiple-scale perturbation
around threshold [9, 10], but for the linear part the resulting solvability conditions
determining the amplitude are equivalent to projecting the basic equations onto the
critical eigenfunctions. We extend now this projection to the stochastic system and
add, if necesary, the nonlinear deterministic terms ad hoc. The director-dependent
parts of the fluctuating forces, described in the paragraph after Eq. (7.11), will lead
to additional multiplicative noise terms also in the amplitude equation. Reference
[120] gives plausibility arguments that within the range of validity of the amplitude
equation they are negligible compared to the additive noise.

We show this projection for autonomous systems with non-degenerate bifurcati-
ons and make some remarks about more general cases later. Inserting the ansatz

u(r,t) = /de’ei(’“"’"ll‘“’t)gb(k’,t)fR(k’,rL) (7.12)

in the linear part of (7.9) and projecting these equations onto the eigenfunctions of
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the adjoint linear problem gives a stochastic linear equation for the mode amplitudes,
at"vb(kat) = )‘(67 k)l/)(kat) +F(k7t) (713)
The noise term is

i £17.60)
F(k‘,t) - [fTR,éR(VH N ik,VJ_,TJ_)fR]’

(7.14)

where V|| and V| are the components of the nabla operator in the r| and r direc-
tions, respectively. The brackets denote the scalar product

B = [ () (7.15)

for vector functions ¢ and m containing fields of the basic equations and defi-
ned in C' where C is the cross-section for D = 1 and the thickness for D =
2. The Hermitean conjugate operators in the adjoint linear problem (ﬁRTat +
LY emilkry=wt) 17} 1 ) = 0 are defined with respect to this scalar product.

~ TInserting (7.11) and (7.4) into (7.14) gives (I') = (I'T) = (I*T*) = 0 and the
noise strength [120]

Tk, OT(K, 1)) = QF(k)(2r)"P8(k — K)6(t — 1), (7.16)
1 [fTRaQ(ik’ Vi, rJ-)fTR]

R _ = =
Q (k) - C |[fTR,§R('l.k,VJ_,T'J_>fR]|2. (717)

The noise-correlation matrix of the basic equations, defined (in real space) as

(E(r, )E(r", 1) = O(V,r)o(r —v")6(t — 1), is given by

O(V,r1)=ksgD(M+ M")D'. (7.18)
where QT is the Hermitean conjugate of D with respect to the scalar product (7.15).
The intensity of stationary fluctuations of the modal amplitudes resulting from Equa-

tion (7.13) with (7.16) is

(SF) = 55 mme 5 (7.19)

The above eqations are valid in the linear regime and in particular for any k£ and
€ < enr, < 0 (for all practical purposes enz, & 0, see [118]). Now I specialize to the
vicinity of the threshold and consider only contributions near k. since the stationary
mode fluctuations (7.19) are large only in these regions. Expanding the linear modal
growth rate A(¢, k) to lowest nontrivial order around threshold and evaluating the
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stochastic terms at threshold one obtains from (7.13) the main result of this section,
the amplitude equation in real space,

70(0; + vy - VIJA(r, 1) = (e+ &V V) A, t)

+ 703/Q n(r,t), (7.20)
Q = Q(k.). (7.21)
The amplitude A(r),t) is defined by its Fourier tansform, A(q,t) = (k. +¢,t). The

deterministic coeflicients To_l = 0\, vy = Viw and & = —0k 0, A (70,&i; in
general complex) come from the expansion of A(e, k. —iV)|) 4 iw. to lowest nontrivial
order around threshold and #(r,?) is a complex Gaussian noise source with (nn) =
(mn*) = 0 and <n*(r),t) n(rﬁ,t') >=6(r — r|’|)5(t —t).

An example of the resulting equal-time correlations < A*(r| 4+ Ary, t) A(ry, ) >-
= [dPre"21Q/(2(2x)PRe]) for 1D with r = z and real coefficients is

_|Az/—€
eroe fO

(A(e + Az, A2, 1)) = e (7.22)

Since (7.20) is an inhomogeneous equation, the precise connection with the physical
quantities is essential. We get from (7.12) near threshold

u(r,t) = A(ry, 1) F(ro)e'®m1meD 4 cc. +hout, (7.23)

Now I discuss some generalizations.

For discretely degenerated bifurcations, e.g., zig and zag rolls (w., key, key) =
(0, ke, +key) in EHC in the oblique-roll regime[48], left and right travelling waves
(+we, kez, 0) in EHC in thin and clean cells [97] or in 1D-RBC in binary mixtures and
other sytems, or both degeneracies [30], there are amplitude equations of the form
(7.20) for each set +k. of modes around the critical k vectors. They are independent
in the linear regime if the different (w., k.) values are sufficiently separated.

For isotropic systems e.g., RBC in isotropic fluids, EHC or RBC in homeotropi-
cally aligned EHC (see e.g., [23]) or optical vortices in large-aperture class A lasers
[128] X is of the form A = A(k* ¢). Inverse Fourier transform of (7.13) and sub-
stituting for the growth rate a generic isotropic expression approximating A near
threshold to O(k?* — k?)? and O(¢), gives with the same approximations as above the
stochastic Swift-Hohenberg (SSH) equation

rodip(ryt) = (= &2 + V) + 70/ Qn(r). 1), (7.24)

where fg = —20°A(k*)/0(k*)?|k=k.. The amplitude 1), defined as the inverse spa-
tial Fourier transform of ¢ (k,t), is related to the physical quantities in the case of
stationary bifurcations by

w = (1) F(r) + hot. (7.25)
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and its modes in k space have the fluctuation intensity (7.19). In contrast to the
difficulties with the deterministic version of this equation in the weakly nonlinear
regime (see e.g., [9]) it should be correct in describing subcritical fluctuations.

Nonautonomous systems with a periodic driving force like AC-driven EHC can be
reduced (using the Floquet theorem and a discrete Fourier transformation in time)
to an infinite set of autonomous equations for the components of w proportional to
et ywith the external driving frequency wy and integer n [120]. Truncating at
SOme N = Nyq. gives an effectively autonomous system.

Note that expression (7.21) is valid for both the amplitude and the SSH equations
and for any boundary conditions (BC) including lateral through flow. The actual
value of () changes because the eigenfunctions (and eventually S) depend on the
BC and on the through flow. As shown in the next section, the fluctuations of the
physical quantities, obtained from the amplitude fluctuations with (7.23) or (7.25), do
not depend on the normalizations of f or f. They are, as equilibrium fluctuations
calculated with the equipartition theorem, inversely proportional to the thickness
(D=2) or to the cross section (D=1).

7.4 Theoretical results

At first I show how the method works by applying it to RBC in isotropic fluids, a
pattern-forming system with one of the simplest basic equations. Then I calculate
fluctuations of axisymmetric vortices in TCF, an example for an 1D system with
curvilinear geometry and a nontrivial basic flow leading to an explicit r; dependence
in the linearized basic equations. Finally I calculate the stochastic term of the
anisotropic amplitude equation of quasi two-dimensional planar EHC. Here the basic
equations are far more complex and depend (due to the periodic driving) explicitely
on time. The calculations are rather lengthy but as straightforward as in the other
systems.

7.4.1 Rayleigh—Bénard convection

We consider both a quasi two-dimensional system with a thickness d, r = (z,y), r1 =
z, and an 1D system with a rectangular cross-section Lyd, r; = (z,y) and r| =
where L, and d are of the same order and so small that the unstable mode branch
fR(k,rL) is well separated from the branches of other perpendicular modes. As
order-parameter equations one can take for the 2D system the SSH equation (7.24)
which has in this classical case real coefficients, and for the 1D system the amplitude
equation (7.20), which specializes without through flow to

T00:A = (e + E02)A + TO\/@U(THa t). (7.26)
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If the one-dimensional system has periodic BC in the y direction then 79 and () are
the same and & is related to the SSH length £o by £ = 4k§g§. The coefficients can
be written as integrals of the eigenfunctions over the cross section [9] and depend
via the eigenfunctions on the BC. The basic equations (7.9) are the Navier-Stokes,
heat balance and continuity equations for the deviations (v,6,p) of the velocity,
temperature and pressure from the unstructured state (vo, 7T, po) [9], where vy = 0
without through flow.

The heat balance equation, written in terms of the temperature deviation, couples
only to v, and has the same stochastic term as in Example 2 in Section 2 above. By
applying twice the curl operation on the Navier-Stokes equations and taking the z
component an equation for v, is obtained (see Eq (A.4) in [118]), which couples only
to the temperature deviation and has the fluctuating force (compare with Example
1 in Section 2) &, = [V x (V x €M), = [V x (V x V§)]..

We gather the ingredients D, M and D' of the noise-correlation matrix. For

incompressible isotropic fluids the dissipative transport coefficients in (7.8) reduce

to Nijkt = Vpm(6ikbj1 + 6abjk), r]fﬁl =0 and Az = ¢,pm k6 where v is the kinematic
viscosity, & the heat diffusion coefficient and ¢, the specific heat per mass. The
components of the Onsager matrix are MZ(JUZ; = Tvpm(6id;1 + 616;1) for the velocity

equations, Mi(?h’th) = ¢y pmT*k6;; for the temperature balance, and zero for the mixed
components. Writing &, as D;Zv)&jk with D;ZU) = (0,0, — 63 V?)0; = —D;.ZU)T (all
indices run from 1 to 3) and D) = V¥ = — DM from example 2 one gets

o) = —2kpTvp, (0% + 8§)V4, Ohth) = _2kpT?ke, p,, V2, and zero for the two
nondiagonal elements. To calculate the Hermitean conjugates I used the fact that v
and 6 vanish at the boundaries.

It is convenient to scale space by d, time by d*/n and temperature by PAT/R
with the Prandtl number P = /s and the Rayleigh number R = ATgad®/(kv)
where « is the heat expansion coefficient and ¢ = 9.81ms~2. Choosing k. = k. and
inserting in (7.21) the noise-correlation matrix O and the time-derivative coefficients

S) = w2 §lhth) — p and SthY) = Sth) — gives the noise intensity of both
the nondimensionalized SSH and amplitude equations,

QU = 2Qf" ,
JordPr U1 (2 -0 (=Y f4al (1293 ) 1) (7.27)

X
| [ord®=Pr  {f2* (k2=V2) f24P " fo}I? ’

with the (small) parameter
() _ kel 7.28
QO /)mdl/2 : ( : )
The integrals go over the scaled cross section C' (C" =1 for 2D, L,/d for 1D and
L,.L,/d* for one Fourier mode) and f, and f; denote the v, and # components of the

eigenfunction at threshold. The relative contribution of the temperature fluctuations
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turns out to be negligible for usual fluids [117, 118], but an analog will be essential
in Taylor—Couette flow, so I will keep it.

If one multiplies equation (7.27) by a scalar product of any of the nonzero ei-
genfunction components f,, f. and fy (f. and f; can be chosen real here and
iqfr = —0.f.) then the right-hand sides of the resulting equations are manifestly
independent of the normalizations. Furthermore some scalar products relate the re-
sulting equations directly to measurable effects of the fluctuations as can be seen
from the left-hand sides of the following examples with (7.25) or (7.23) and (¢ *i))
(or (A*A)) « Q. Multiplying equation (7.27) with ([f., f.] + [fz, fz]) pmC’/2 makes
its sides proportional to p,/2 [ d*Pr) (v?), the mean energy per length (2D) or
per area (1D), contained in the velocity fluctuations (see below). Multiplying both
sides with C'[fy, fs] relates them to the cross-section integrated temperature fluctua-
tions proportional to the shadowgraph signal as discussed in Section 5. The simplest
expression is obtained by multiplying (7.27) with [f,, fg], relating the sides to the
relative increase N — 1 = R:'[f., fo](|¢|*) of the heat transport due to convection
(N is the Nusselt number) which is again a (globally) measurable quantity. This
gives

2057 (1 + o)
R
[fzaf&]Q( ) = OC/TOQ(R)

For 2D and free-slip BC (or 1D with additional periodic BC at +1,/2 and d, = 0),
one has 79 = 2(P 4+ 1)/(37?) and Eq. (7.29) is (after taking care of the different sca-
lings and relations to the physical variables) the classic result of Graham [117, 129].
For no-slip BC 75 = (P + 0.512)/19.65 [118] and (7.29) is the result of van Beijeren
and Cohen [130]. The BC and the dimensionality enter via 79 and the projection

(7.29)

integral. In particular, cross-section integrated fluctuating quantities rather than the
fluctuations themselves are independent of the transverse system size.

As an example I give for the 1D system with periodic BC and o® = 0 the
average line energy density

(B) =22 [y deto?) = por’C' (o )+ U D AP) (30
c
of the fluctuations in physical units,

N kT
<E >RBO - 4d£0\/ﬂ(—)\07'0)

where A\g = A(e = —1,k = k.) is the equilibrium-growth rate of the mode becoming
unstable at threshold and, for no-slip BC, &, = 0.38 and —Ag7g = 14+ 1.93P. In deri-
ving (7.31) T used (7.23), the stationary fluctuations (7.22) of the scaled 1D amplitude
equation, expressed f, in terms of f, and used (7.29) with 14 := [f., f.]/[f-, fe] given
below in (7.34) and an analogous integral expression for Ag. There is an additional

(7.31)
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factor e1#/¢l cos k. with the correlation length € = & /1/—¢ for two-point equal-time
velocity correlations with separation z. For 2D and near threshold the corresponding
energy per area is k./2 times the line energy density (7.31) [131].

Equation (7.31) states that in 1D the mean kinetic energy of velocity fluctuations
in a volume with unscaled cross section C' and twice the unscaled correlation length ¢d
is %kBT(TO|)\0|6)_1. In 2D the corresponding volume is d times the area (d)(4Aon/7)
with A,y = w/k.. This appears, especially for P — 0 (A\g79 — —1), similar to
equipartition-theorem fluctuations. Indeed, calculating the average energy of velocity
fluctuations contained in one Fourier-mode pair with (7.19) and (7.16) gives, for
arbitrary vertical BC and Prandtl numbers and periodic BC in z and y,

_kBT{l P=0ore=—1,

Pm 3 2 2
— | d _ = ,
v T<(|’vk| -I_ |’U k| )> |6| (|/\0|T0)_1 € 0_7

7.32
. (732)

where V' is the volume of the system. Without temperature gradient (e = —1) the
kinetic energy contained in these fluctuations fulfills the equipartition theorem (two
physical degrees of freedom per wave-vector pair). For zero Prandtl number the
fluctuations increase like —1/¢ if a temperature gradient is applied.

7.4.2 Taylor—Couette flow

The system consists of two concentric cylinders of inner and outer radii By and Rs,
rotating at angular frequencies £y and ), respectively. We scale lengths and time
as in RBC, where d is now the gap width Ry — Ry, and take as control parameter
the dimensionless inner rotation w; = Q;d?/v. The outer rotation wy = Q4d? /v and
the radius ratio n = R;/R, are fixed parameters. The system is effectively one-
dimensional and described best in cylindrical coordinates r = z and r; = (r, ).
In a range of the control parameters where the first instability of the basic Couette
flow leads to axisymmetric vortices [9], the amplitude equation for A(z,t) without
through flow is the same as Eq. (7.26) for 1D-RBC. With axial through flow there is
an additional group velocity term v,0, A where v, is 1.23 times the mean axial velocity
of the through flow (1.05 times the phase velocity of the vortices) and furthermore
the other coefficients have very small imaginary parts [132].

The only noise source in the basic equations [73] comes from the stress tensor in
the Navier-Stokes equations for the deviations of the velocity from the basic Couette
flow. In cylindrical coordinates one gets (the indices take the values r, ¢, and z)

(Va); = Dgﬁc)ajk with DZ(;”;C) = (8ir™ 10 + 17 8k2(8i261 — 6:16;2)). The Hermitean
conjugates with respect to (7.15) are DL(C?) = —&ix0; + 17 k(61201 — 8:1652). A
straightforward calculation of Eq. (7.21) gives an expression for the noise strength
of the TCF amplitude equation which is similar to (7.27). Instead of writing it down
(see [121, 122]) T use the fact that for wy > 0 the Taylor system can be mapped onto

RBC to second order in the gap width 1 — 5 yielding explicit analytic expressions
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in terms of RBC parameters [122]. The resulting noise intensity of the amplitude
equation is

(R 4 oD I,
s F1QD (wn,m) ~ (JR)| Mo, (7.33)
P=1

TTT,

where

—

ol k21, 1]

fo = [fo fo]l  [fe, (B2 = 02)2F) (7.34)
om0 Rt R .
R =" (7.35)

The radial eigenfunction f, corresponds to f, in the RBC system and w(7) denotes
the squared dimensionless angular velocity of the basic Couette-flow w(7) [73] in the
middle of the gap. For no-slip BC (R. = 1708, TéR) = 0.077, 1,4 = 0.013) the error
with respect to a calculation of (7.21) using numerically obtained eigenfunctions
[121] is less than 2.5% for n = 0.738 and all wy > 0 [122]. Smaller gaps (larger )
should make the approximation even better since the mapping onto RBC gets exact
for n — 1.

Eqation (7.33) states that, if one relates the amplitude to v, in TCF and to v, in
RBC, the noise strength of the amplitude equation for axisymmetric TCF vortices
is (14 oz(T))/(l + oz(R)) ~ (1+ oz(T)) times the noise strength of 1D-RBC with P =1,
a width 277, and periodic BC in y. While in RBC the relative influence o of the
temperature fluctuations is negligible, the relative influence o(T) of v, fluctuations
on fluctuations of the axisymmetric Taylor vortices dominates for large corotation
rates wy. Velocity fluctuations, integrated over the respective cross sections, should
be comparable in both systems if they are at the same (small, negative) distance e
from threshold [133]. For the mean line energy (E')pop = 2 [.r drd¢(v} + 'vf>(T),
contained in the fluctuations of the velocity components v, and v, which correspond
to v, and v, in RBC, one obtains

kgT (1+ a(T)) ’/"O(T)
E = . 7.36
< >TCF (4d€0 |6|) (—)\(OR)TO(R)) O(R) ( )

With TO(T)/TO(R) = fg/fg(m (Ref. [122]) the mean energy per length is effectively
(1 + a(T))(TO(T)/TO(R))l/2 times the RBC line energy density which is (E')z5, =
0.225kgT/(d+/|€|) for no-slip BC.
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FIGURE 7.1. Average line energy contained in the fluctuations
of the radial and axial velocity components of axisymmetric
Taylor vortices with realistic no-slip BC. The plot shows the
enhancement factor (1 + az(T))(7'(511)/7'(51%))1/2 of the line energy
density with respect to that of the equivalent one-dimensional
Rayleigh—-Bénard system with Prandtl number P = 1 and the
same distance € from threshold. The hoerizontal axis is the
dimensionless corotation we = dime/ v of the outer cylinder.
Parameter is the radius ratio 7.

Figure 7.1 shows a plot of this enhancement factor for various outer corotation rates
wy and radius ratii n. For the outer cylinder at rest (wy = 0) and a radius ratio
n = 0.738 as in [121], the line energy is nearly the same as for RBC with P = 1
(factor 0.94). Without external stress (w; = wy = al?)
equipartition-theorem results .

= 0) one recovers again

7.4.3 Planar electrohydrodynamic convection

The system consists of a thin liquid crystal cell (thickness d) sandwiched between two
planar electrodes. The external stress is an applied AC voltage V(1) = v/2V} cos wot;
the control parameter is V for fixed wy and e = V2/V? — 1. We assume planar BC
n = (1,0,0) making the system anisotropic in the infinite directions and consider
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a range of wy and of the material parameters, where the first instability at V, is to
normal rolls k. = (¢.,0) (roll axis normal to equilibrium director orientation) with
an essentially time independent splay-bend director mode (conductive regime) [48].

The system is quasi two dimensional. Choosing r| = (z,y),7. = 2, the amplitude
equation (7.20) reduces to
o A(x,y,t) = (e + &,07 + 6,00 A + 70/ Qn(=, y,1). (7.37)

The basic charge conservation, director, and nematic Navier—Stokes equations for the

deviations (¢, én, v) of the basic state (\/§VO§ cos wot, Mg, 0) have periodic coefficients

“) in the charge equation (see

(as)
the director equation (example 3) and from both parts of o;; in the fluid equ]ation
(example 1). The noise correlation matrix O from equation (7.18), calculated with
the anisotropic Onsager matrix (7.8) without the temperature components, is given
in [120], Equation (67).

To calculate the threshold and the eigenfunctions in (7.21) I apply the lowest-

[48]. Stochastic forces come from the fluctuations of j¢

example 2 at the end of Section 2), from the antisymmetric stress tensor o,:"’ in

order time-Fourier expansion for the conductive mode and lowest-order trial functions
satisfying no-slip planar BC’s for the z dependencies of all fields [120]. Furthermore
I eliminate the velocities adiabatically. With lengths scaled by d and times by the
director relaxation time 7, = v1d*/(Ky17?) (K1 is the splay elastic constant and
71 the rotational viscosity), a straightforward but lengthy calculation of (7.21) gives
eventually for the parameter set of MBBA T [120],

2007 ol (140 o e
0= —+0 :
frer f2:]Q C'K (T0ho)? ! (Wcutoff>

(7.38)

where |\o|/K = 1.84, o\P) = 14.9P,, |Xo|ro = 1 + 93P, and P, = 7,/74 ~
2.81(um/d)*. The left-hand side of (7.38) is proportional to the fluctuations of n,, a
quantity which is related to the fluctuations of light modulations in the shadowgraph
method, see Section 5.

The quantity |Ao|/K with K = [f.., (K33¢*/ K11 — 02) f.]/[fn.s fn.] is the ratio of
the energy dissipation rate to the elastic energy of the fluctuating mode. The ratio
Py of the time scales 7 = €pey /o, and 74 of the electric and director subsystems
is the analog of the Prandtl number in RBC. The relative contribution o(#) of the
charge fluctuations is the analog of the temperature fluctuations in RBC and the
vy fluctuations in TCF. Since both, o) and Py, are proportional to d~2, charge
fluctuations become important for thin cells. In principle there is a second time-
scale ratio d?p,, /(v74) of the time scales of the fluid and director subsystems but it
turns out to be negligibly small (/2 107%). This justifies the adiabatic elimination of
the velocities and implies that the velocity fluctuations, which play the main role in

RBC, are negligible here.
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The prefactor

= kFT ~ 107
]Xlld d
is much larger than in RBC or TCF making EHC the best candidate for quantitative

fluctuation measurements.

Qs (7.39)

As in the other systems one can calculate the mean line and area densities of the
orientational-elastic energy contained in the fluctuations of the splay-bend director
modes. Although typical EHC systems have large aspect ratios and are quasi two di-
rlnensional, the line energy density (E" pne :'% fcdy dz{[?’n(aznz)2 —|—K3?(azn2)2} =
sKuKC'[fo,, [2.]{|A]*) (proportional to the integrated director fluctuations) makes
sense if interpreted as energy contained in all Fourier modes with &, = 0. Indeed it
is this quantity which was measured in the experiments of reference [97] as described
in the next section. With the 1D version of (7.37), (7.38) and (7.22) one obtains

kgT
(E") =—90 (7.40)
YN
with
o 1+a®
f=—-, 7.41
e (T4

remarkably similar to (7.31) and (7.36) although the energy itself is quite different
in nature, here an elastic energy while in RBC and TCF a kinetic energy.

There is no simple expression for the energy per area in the 2D system [134]. Very
near to the Lifshitz point where the correlation length &g, vanishes [48], dimensional
arguments lead to an |e|~'/* behavior (for the 1D case a crossover from |e|7/? to
|e|73/% is predicted [120]).

Finally one can again compare the mean orientational-elastic energy of the critical
(discrete) Fourier-mode pair with the equipartition theorem. With (7.19) and the
0D version of (7.38) for a volume V = L,L,d and periodic BC in z and y one obtains

near threshold
kgT

(B + D)y = %,@. (7.42)
The factor # comes from the electric degrees of freedom, both stochastic (relative
influence of charge fluctuations o a(E)) and deterministic (Ag79 # —1 due to two
comparable time scales). The relative influence f—1 of the electric degrees of freedom
onto the director fluctuations vanishes for P, = 0, i.e., if the electric variables can
be adiabatically eliminated. A more general calculation for k # k., and 0 > ¢ >
—1 with (7.17) shows that g(k, Pi,e — —1) — 1, i.e., without external stress the
equipartition-theorem result is recovered.
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FIGURE 7.2. Influence of the electric degrees of freedom
(charge fluctuations and change of the relaxation time) on direc-
tor fluctuations of EHC for external frequencies much smaller
than the cutoff frequency and relatively small charge relaxation
times. The plot shows the enhancement factor (k. ¢) for the
energy of the critical splay-bend Fourier mode with respect to
kgT/(2|€¢|) which would be obtained by adiabatically elimina-
ting the charge and neglecting charge fluctuations. The horizon-
tal axis denotes the reduced control parameter where ¢ = —1
(no external stress) corresponds to an equilibrium system. Pa-
rameter is the cell thickness d « (74/7,)'/%. For € — 0, § is
given by Eq. (7.41).

Figure 7.2 shows a plot of the enhancement factor 3(k., €) as a function of e for some
values of the cell thickness (P, oc d™2).

Note that even for negligible charge fluctuations the conductivity and thus the
nonequilibrium property is essential since it influences the relaxation time. Without
electric conductivity, but leaving the other MBBA parameters unchanged, the sta-
bilizing effect of the negative dielectric anisotropy would lead to decreased instead
of enhanced fluctuations for increasing V4.
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7.5 Experimental results

A common difficulty in measuring thermal fluctuations in pattern-forming system
is their small magnitude, expressed by the prefactors Q(()R) and Q(()E). To measure
the fluctuations directly, one needs a system with a favourable )y and as little
imperfections as possible, to be able to go very near threshold.

Both Q(()R) and Q(()E) can be increased by decreasing the thickness and Q(()R) also by
decreasing p,, making gasses (v comparable with fluids) the favourable RBC system.
A lower limit for the thickness in RBC is set by the temperature difference < v/d*
needed to reach the threshold together with the requirement that there is no freezing
at the top and boiling at the bottom. In EHC the critical voltage of the conductive
mode is independent of the thickness (at least as long as the ratio of the charge
relaxation time to the director relaxation time, P, oc d=2%, is much smaller than unity
[48]) and the limiting factor for d is electric breakthrough. In addition, for small d
the director relaxation time becomes comparable with 7,, a regime which is not yet
investigated systematically.

In general the conditions for EHC are more favourable than in the RB systems.
So up to very recently EHC was the only system where thermal fluctuations could
be measured directly [97, 135, 113]. In reference [97] director fluctuations of a thin
(d = 13 pm) cell of MBBA with an aspect ratio of about 1000 (quasi-2D) were
determined with the shadowgraph method [39], i.e., by measuring intensity modu-
lations of transmitted light. This method uses the dependence of the refractive
index on the director orientation. For small fluctuations around the equilibrium
alignment ny = (1,0,0), the light modulations I(x,y,t) = I(x,y,t)/Iy — 1 are
proportional to the z integrated director bend, I= —égrcO.n, with n,(z,y,t) =
[ dzn.(r,t) and known shadowgraph sensitivity §gmc [39, 136]. If one normalizes
fn. to [ & f, =1, the theoretically calculated structure function S(Az, Ay, At) :=
<f(:v +Az,y+ Ay, t + At)f(:v,y,t)) is related to the correlations of the amplitude
fluctuations in the case of stationary normal rolls by

S(Az, Ay, At) = 2¢265uc(A™(2,y, ) Az + Az,y + Ay, t + Al))
cos . Ax. (7.43)

The photodetector integrated in y over a length L, = 13.4d, which is larger than the
actual correlation length in y for typical € values. So it measured in this direction
effectively the discrete Fourier component at k, = 0, j(m,t) =L fOLydy j(;v,y,t).
The measured 1D-correlations S(Ax, At) should correspond to the amplitude corre-
lations of an 1D system with cross-section dL, and periodic BC in y, i.e., effectively
to the 1D version of (7.37) with d, = 0 and a noise strength QgE) = L;lQé%).
Recall that all considerations about fluctuations in EHC in this chapter are based
onto the SM. In the above system, however, one observes travelling waves above
threshold and consistent with this, the observed fluctuations oscillate in time, see
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Fig.4 of [97]. For all time delays the correlations were reflection symmetric in
showing that they are caused by fluctuations of right and left travelling waves in
statistically equal proportions indicating a Hopf bifurcation [137].

In the simplest case this can be captured by assuming for the two waves (+w., k., 0)
two independent 1D-stochastic amplitude equations of the form (7.37) with group-
velocity terms +v,0, A added on their left-hand sides. The structure function then
has two contributions of the form (7.43) with cos ¢.Ax replaced by cos(¢.Az Fw.At).
Analytically calculated correlations of the amplitude equations [97] lead to a struc-
ture function which agrees, as function of space and time delay, very well with the
measured one.

The structure function shows the predicted symmetries and the increase of fluc-
tuation intensity and correlation lengths and times, as one approaches the threshold.
The equal-time correlations (7.22) for each of the waves, < A*(x,t)A(x + Az, t) >
= (|AP)e=84e] with (|A]?) = Q/(87véoy/Je]) have the predicted correlation length
¢ = &le|™"/? and an intensity o |e|7'/? consistent with the measured equal-time
structure function S(Az, At = 0). The decay of S(Az = 0, At) with time delay is
also in good agreement with the prediction. The oscillations of S have about the
same wavelength and frequency as the deterministic pattern above threshold. In
addition the absolute fluctuation intensity agrees within a factor of about 1.3 with
the theoretical prediction (7.40). The measured intensity corresponds to [, ~ 1.44
while the theoretical prediction (7.41) can be taken from Fig. 7.2 yielding 8 = 1.1
for d = 13pm and € = 0.

Similar good agreement is found in [135] by measuring the shadowgraph signal
in a MBBA cell with 23um thickness. In agreement with (7.42) both the correlation
time and the intensity as obtained from the Fourier-mode pair with the critical wave
vector are o< |e|~!. The measured absolute intensity, 3., = 1.3, was 30% above
equipartition-theorem estimates while the theory predicts g = 1.03.

Horner et al [113] have measured spatial correlations of fluctuations in a cell filled
with the nematic Merck Phase V. For low external frequencies this material has a
(deterministic) bifurcation to oblique rolls, i.e., a degenerated bifurcation to zig and
zag rolls.
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FIGURE 7.3. Shadowgraph image of subctritical fluctuations
near the threshold of electroconvection of the nematic Merck

Phase V in a frequency regime where there would be oblique
rolls above threshold. (Courtesy of I. Rehberg and F. Horner).

Figure 7.3 shows a snapshot of the resulting shadowgraph intensity. According
to theory the equal-time structure function (spatial correlation) has now two con-
tributions of the form (7.43) with cos ¢g. Az replaced by cos(¢.Az £ p.Ay) and the
amplitude equation has the general form (7.20) with real coefficients and v, = 0. The
spatial Fourier transform of the theoretically calculated structure function, S(k,, k),
has four peaks at the wave vectors £k.;, and £k.,,. The structure function obtained
from Fig. 7.3 shows qualitative agreement with the theoretical prediction.

Recently, fluctuations were measured directly in effectively two-dimensional RBC
in gaseous CO; at elevated pressures [131] and in an effectively one-dimensional con-
vection channel in a binary mixture of ethanol and water [138]. In the CO, expe-
riment, QéR) is larger than in liquids but nevertheless the measured signal required
extensive processing. As in the EHC experiments, the fluctuations were measured
with the shadowgraph technique. Here the refractive index depends on the density
and on the temperature via the expansion coefficient. The shadowgraph signal for
light, incident in the z direction, is I(z,y,t) = —6rpc V20 with § = [ &0 and known
sensitivity érpc[131]. Near threshold the relevant contributions to the fluctuating
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pattern include all wave vectors with |k| ~ k.. With f; normalized to [dzfs = 1,
the modulation amplitude I = Srpck*i is directly proportional to the amplitude of
the stochastic Swift—-Hohenberg equation and the theoretically determined structure
function S(Axz, Ay, At) = 6% 5-k*(1p*1) is given by the amplitude correlations. The
measured spatial Fourier transform of the equal-time structure function agreed well
with the theoretical prediction near threshold, S(k) = So/((k — k.)? + |¢|) [131] with
So = ShpokiQmo/(2(27)?) from Eq. (7.19). In particular it is isotropic, large in a
ring of radius k. and the peak at k. is proportional to |e|™'. In real space, both the
absolute intensity of the temperature fluctuations and the |e|='/? behavior agreed
perfectly with the theoretical prediction o [ d*kS(k) for high pressures where the
Boussinesq approximation holds. For lower pressures the experimental values were
up to 20% smaller.

In the experiment on binary mixtures [138], the fluctuations are observed in a
parameter regime where the first instability is a Hopf bifurcation leading to travelling
waves because these time-dependent patterns can be observed with a better signal—
to-noise ratio than stationary ones. The fluctuation intensity shows the correct
le|=1/2 behavior of 1D systems and the magnitude is of the same order as idealized
theoretical estimates.

So far I described direct measurements. A possibility to overcome the difficulties
with the small signal are indirect measurements where the fluctuations are enhanced
by some amplifying mechanism prior to measurement.

The amplification mechanism can be external by applying control-parameter
ramps in time going from sub- to supercritical values. As soon as the control para-
meter is supercritical, the small, initially subcritical, fluctuations grow exponentially
until they become measurable. Measurements on RBC with this method gave the
first experimental evidence of stochastic effects in pattern—forming systems [139, 140].
As in the direct measurements, the structure factor in Fourier space had a maximum
along a ring with radius k.. The intensity, however, was about a factor of 2 x 10*
larger than predicted for thermal fluctuations.

Another possibility is internal amplification in space in the convectively unstable
regime in systems with a nonzero group velocity [123]. Above the convective insta-
bility fluctuations are amplified as they travel through the system. If one is also
above the absolute threshold, they would grow in the whole system to nonlinear sa-
turation and eventually the system would reach a deterministic attractor. Below the
absolute threshold, however, the propagation velocity of perturbations, determined
by the growth rate and the spreading by diffusion, is smaller than the group velocity
so that fluctuations are convected away faster than they can grow. So at least in
parts of the system the fluctuations are both linear and much larger than the sub-
critical ones, and the resulting "noise—sustained structures” [132] can be measured.
Typically systems with nonzero group velocity have a Hopf bifurcation or are open
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systems, e.g., RBC or TCF with throughflow.

The Hopf bifurcation of RBC in binary—fluid mixtures with a negative separation
ratio [9] was used to measure fluctuations in an quasi—1D cell [141, 138]. Theoretically
this system is described by two stochastic 1D complex amplitude equations similar to
the ones used in EHC above. The dissipative effect of mass diffusion leads (compare
Eqgs. (7.21) and (7.18)) to an additional term in the RBC fluctuation strength (7.27)
which has been calculated in [119] and was found to be small [142]. The interpretation
is difficult because the fluctuations described by these stochastic equations depend
strongly on the boundary conditions which in the experiment correspond to ramps
consisting of decreasing height on both sides of the cell. Analytic calculations with
an effective cell length [141] lead to a fluctuation intensity in accordance with the
experiment whereas numerical calculations taking into account more realistic BC by
introducing a space dependent control parameter at each side lead to fluctuation
intensities about two orders of magnitude smaller than the measured ones [143]. A
possible explanation of this large discrepancy is the exponential dependence of the
intensity on the assumed effective cell length in the analytic calculation together
with the fact that there is no obvious way to define this length.

Things are easier to interprete in open—flow systems where there is only one
travelling wave and the downstream BC is irrelevant (in the convectively unstable
regime information cannot travel upwards). Numerical simulations showed that the
fluctuations are even rather insensitive to the upstream BC. Even if one sets the
upstream fluctuations at the inlet equal to zero, the stochastic volume force would
create fluctuations which after a short distance from the inlet are nearly the same
as with more realistic equilibrium fluctuations at the inlet [121]. In any case the
fluctuations are amplified on their way through the system until they become mea-
surable and eventually saturate at the "healing length”. In a way the experiments
in open—flow systems are the analog in space to the ramping experiments in time.
In the former, time is translated to space by the group velocity. Measurements of
the rms value of axial velocity fluctuations in TCF with through flow with a laser—
Doppler interferometer [121] agreed with theory in all aspects except the absolute
fluctuation intensity which was by a factor of 270 larger than the predicted value

V2 d? x [f., £]Q 7o/ (460\/—¢) for thermal fluctuations.

7.6 Discussion

In this chapter I tried to provide an understanding of fluctuations near pattern—
forming transitions in nonequilibrium extended systems starting from stochastic hy-
drodynamics, an approach formulated by Landau [68] to describe equilibrium hy-
drodynamic fluctuations in simple fluids. The rationale to extend this approach to
nonequilibrium systems is that it requires only local equilibrium which is fulfilled



Discussion 119

in many hydrodynamic systems which are far from global equilibrium. In addition
the separation of scales between the microscopic and macroscopic degrees of freedom
justifies the assumption that the fluctuating forces are § correlated.

Fluctuating hydrodynamics makes definite predictions about the fluctuations as
a function of the quasi—dimensionality and the distance from threshold. The corre-
lation functions of the fluctuations oscillate as function of space and time separation
with about the same period as the deterministic pattern and below threshold they
retain all symmetries of the system. Correlation lengths and times, and the fluc-
tuation intensity, increase with the proximity to the deterministic threshold, with
scaling exponents which depend on the symmetries and the quasi—-dimensionality.
This means that the fluctuations in real space consist of patches with the size of
about the correlation length, living for about one correlation time. Each patch is a
wave packet of one degenerate mode out of the uniformly distributed set of critical
modes. The fluctuations anticipate, in a way, the possible deterministic patterns
above the primary threshold.

In 1D systems, many of these features are analogous to equilibrium fluctuati-
ons. The scaling exponents of correlation lengths, times and of the intensity are the
same. In 2D, pattern—forming systems with continous degeneracy (RBC or EHC
at the transition from normal to oblique rolls) offer new and fascinating symmetry
classes of transitions. If only one field is dynamically active (e.g., n, for normal rolls
in EHC with P, — 0 or v, for RBC with P — 0), the average energy contained in
the fluctuations of one Fourier mode or, equivalently, the energy in a fluid element of
half the size of the correlation length in 1D systems, is |¢|™! times the equipartition—
theorem fluctuations kgT'/2. This is again as in equilibrium, for example below the
splay—bend Fréedericksz transition in planar EHC. Additional dynamically active
fields lead both to new fluctuating forces summarized in the terms proportional to
B oM and o) in Egs. (7.29), (7.36) and (7.40) with (7.41), and to a determini-
stic influence on the relaxation rate, making (—Ag79) unequal to unity, from Sec. 4
(=Xo70) = 1+ 1.93P in RBC, 2.93T(§T)/T(§R) in TCF and 1 4 9.37.; /74 in EHC. The
net effect on the fluctuations can be increasing as in the case of charge fluctuations
in EHC, decreasing as for the temperature field in RBC, or dependent on a second
control parameter as in TCF.

The above predictions agree with experiments. One sees patches of zig and zag
rolls in the oblique-roll regime of EHC, areas of left and right travelling waves if
there is a Hopf bifurcation, and isotropically distributed roll directions in RBC in
simple fluids corresponding to a ring in k& space.

The above features are predicted for any noise source if its correlations in space
and time are much smaller than the macroscopic scales. To show that thermal
fluctuations are involved and that stochastic hydrodynamics provides the correct
thermodynamical description of nonequilibrium systems near a phase transition, the
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absolute value of the fluctuation intensity must agree with the experiment. This is
the case in the direct measurements of the EHC and RBC systems described above.
[The fact that the measured fluctuations in the RBC experiments are up to 20%
smaller for low pressures, can probably be explained by using the non—Boussinesq
equations in Eqgs. (7.21) and (7.18).]

An open question is the observed fluctuation intensity in the indirect experiments.
In the open-flow experiment [132], the observed fluctuation intensity is more than
two orders of magnitude too large; in the time-ramping experiments [139, 140] the
discrepancy is even four orders of magnitude, and in the binary-mixture experiment
using travelling waves as amplification mechanism [141] it is difficult to interpret.
An investigation primarily aimed at describing nonlinear transient patterns in the
splay Fréedericksz transition of NLCs with positive dielectric anoisotropy [144] shows
that in a situation similar to the above indirect measurements (jump of the control
parameter to above threshold) even in nematics the experimental noise strength is
much larger than that of thermal noise. Specifically the initial (subcritical) amplitude
of the homogeneous mode obtained from the experimental fit to the nematodynamic
equations is about two orders of magnitude larger than predicted by Eq. (7.42).
This is strikingly similar to the time-ramping experiments [139, 140] (the intensity
is equal to the square of the amplitude).

All this seems to indicate that the assumption of stochastic hydrodynamics to-
gether with local equilibrium is valid only in stationary situations. However, one has
to be aware that in all indirect experiments the logarithm of the noise strength rather
than the noise strength itself is measured. In the time-ramping experiments, errors
in determining the effective time difference from the initial subcritical fluctuations
to saturation contribute exponentially. The same is true for the effective travelling
length to saturation ("healing length” /;) in the open-flow and travelling-wave ex-
periments and, in all three indirect experiments, for the uncertainty in the distance
from the convective threshold. We take as an example the TCF experiment [132] in
the regime of convective instability 0 < € < ¢,. The fluctuation intensity is roughly
2% times the fluctuations at the inlet z = 0 where the spatial growth rate 3 increa-
ses monotonically with ¢ and is essentially proportional to ¢ if one is not too close to
the absolute threshold [121]. If one assumes at the inlet a priori thermal equilibrium

fluctuations <52> =~ with known constant v (and not larger inlet fluctuations due
to additional experimental noise), the intensity at the nonlinear saturation for typi-
cal threshold distances is about nine orders of magnitude larger. The fluctuations
were measured only in the region where the intensity is more than 0.01 times the
saturation value, so, experimentally, the strength of the fluctuating forces is essenti-
ally inferred from the healing length [, by vQesp = (52(2 =0)) = ¢~ <§2>sat. With
known saturation fluctuations and assuming 3 o< €, the error in the decadic loga-
rithm of the experimental noise strength, A(log,q Qexp), is 9(A€/€) and 9(AlL/11) due
to the relative errors in the threshold distance and the healing length, respectively.
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A relative error of 0.22 in one of these quantities would lead to a factor of 100 in
the measured noise strength. Note that 3 depends also on other parameters of the
amplitude equation like 7y and & [121], whose errors contribute similarly.
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