Chapter 6
Weakly nonlinear analysis

Never I encountered a problem which did not become more com-
plicated on careful examination

P. Anderson

The linear analysis of the WEM presented in the previous chapter predicts a thres-
hold shift with respect to the SM and, for sufficiently low recombination rates, a
Hopf bifurcation to travelling rolls. Further questions can be treated at the weakly-
nonlinear level. Is the bifurcation continuous (forward) or hysteretic (backward)? If
it is forward, which combinations of degenerate linear modes will be selected by the
dynamics? For instances, for a Hopf bifurcation, the dynamics can select travelling
waves or standing waves, i.e., a superposition of left and right travelling waves. In
the oblique-roll regime, isolated regions of "zig” or "zag” modes, or a superposition
of both, can be favoured; for travelling oblique waves there are even more possibi-
lities. Furthermore, how does the frequency of the travelling waves depend on the
reduced control parameter ¢ = R/R. — 17 Finally, can the observation of chaos at
onset [30, 31] be explained within the framework of the weakly-nonlinear analysis?
If the bifurcation is hysteretic, there is the question of the amplitude and of the
type (e.g., stationary or oscillatory) of the nonlinear final state, and of the range
of the control parameters where hysteresis effects take place. Upon decreasing the
control parameter, when does the system jump back to the unstructured state?
The basic idea of the weakly-nonlinear analysis [1, 102, 103] is to reduce the
phase space of the system to that of the slowly relaxing "dynamically active” modes.
The remaining fast degrees of freedom are ”slaved” [1] to these modes. This idea
uses the fact that, if one starts with general initial conditions (with a general point
in the phase space of the system), the state in phase space will approach on a fast

time scale the subspace spanned by the slowly relaxing degrees of freedom, and the
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74 Weakly nonlinear analysis

subsequent dynamics will take place on this subspace. For recent reviews see, e.g.,
[9, 50, 24] or [104].

The (still infinitely dimensional) set of these dynamically active degrees of free-
dom can be constructed from modes on the same dispersion branches as the critical
modes, with wave vectors close to the critical wave vectors. In addition, this set may
contain slowly relaxing modes generated by the nonlinearities.

In Chapter 6.1, I discuss the Ginzburg-Landau approach and give the (uncoupled)
complex Ginzburg-Landau equation (CGL) for the WEM in the special case of a
one-dimensional dynamics of left-travelling waves (LTW) (or, equivalently, right-
travelling waves).

Chapter 6.2 gives analytic expressions for the coefficients of this CGL. Rather
than providing quantitative numerical results, the goal is a qualitative (at most semi-
quantitative) understanding of the nonlinear behaviour of the WEM. In particular,
the intricate influence of the WEM mobility parameter & and the recombination
parameter 7 on the dynamics will be elucidated by means of analytic expressions
containing explicitely these parameters.

In Chapter 6.3, I summarize the weakly-nonlinear results of the WEM by phase
diagrams in the WEM parameter space (&,7) and by an expression for the change
of the oscillation frequency with the control parameter in the Hopf regime. The
predictions are compared with experiments on MBBA and I 52. Furthermore, I give
estimates for the nonlinear amplitude in the stationary-hysteretic regime assuming
no WEM effects in the nonlinear state. Most results agree, within factors of about
two with the experiments.

Chapter 6.4 gives a discussion of the weakly-nonlinear results.

6.1 Ginzburg-Landau equations for the WEM

With at most discrete degeneration of the critical mode, the near-threshold dyna-
mics can be described, for a continuous bifurcation, by a set of third-order coupled
Ginzburg-Landau equations (CCGL) for the envelopes (or amplitudes) A,,(z,y,t) of
wave packets with wave vectors near that of the mth mode in the set of the degenera-
ted critical modes. For oblique travelling rolls, this involves a total of four amplitudes
for the modes of the right and left-travelling "zig” and "zag” rolls. For a hysteretic
bifurcation, one needs at least fifth-order CCGLs with a stabilizing fifth-order term
to counteract the destabilizing third-order contribution.

For simplicity, I restrict the treatment to one lateral dimension, x, and to modes

near the critical mode oc e{a*+%%) for left-travelling waves (LTW) leading to a one-
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dimensional uncoupled CGL. Some relevant experimental results (especially those for
[ 52 [30, 31]) are for the regime of oblique rolls and the weakly-nonlinear description
for, say, the wave packet of the LTWs with p. > 0, would require a two-dimensional
CGL. Nevertheless, one can expect that, like ¢. and wy in the linear regime, many
weakly-nonlinear aspects of the oblique-roll regime can be described, at least semi-
quantitatively, by dropping the y dependence. !

Restricting to left-travelling rolls (and to p > 0 for oblique rolls), the set of
slowly-relaxing modes can be represented as a wave packet with wave vectors around

that of the critical LTW,

u = u 4 higher order terms,
u) = A(:Iz,t)'&(z,wot)ei[qC'x+w(qﬂ’E)t] + c.c. (6.1)

The complex amplitude A(@,t) varies slowly in z, y and in time but the y dependence
will be dropped. The spatial variation e’d<* of the critical mode and its frequency
(the imaginary part of the linear growth rate) at ¢ = ¢, and at the actual value of
the control parameter is separated out. The function u is the Floquet function, Eq.
(5.14), for the LTW at threshold and contains the z dependence and the periodicity
with the external field. Within the lowest-order Floquet and Galerkin expansions,
@ is given by Eq. (5.15) where (6, ¢+, 6, ngo), --+) is the eigenvector composed of
the Galerkin coefficients, given by Eq. (5.17) for ¢ = q., R = R., and X = iwy. For
quantitative statements about nonlinear (or stochastic) properties, the normalization
of the eigenfunctions is important. It is chosen such that |A| gives directly the
maximum director angle arctan(n,) &~ n, at z = 0, which can be measured directly

by the shadowgraph method [105],
na(r,1) = | A, )] cos = coslg, - + (e, 0,)t + gl (62)

with ¢4 = arg(A). For the coefficients of the one-mode expansion (5.15), this corre-
sponds to ngo) = (277)1/2.
The form of the amplitude equation is determined completely by symmetry cons-

traints [9],
70(0; — v,0.)A = [e + €2(1 +ib)D2]A — g(1 + ic)|A]* A. (6.3)

There are several ways to derive the coefficients. These include the introduction
of multiple scales and a subsequent systematic expansion, or the use of "order-
parameter equations in g space together with projection techniques employing the

"slaving principle” [1].

!The nonlinear selection of the zig and zag modes, of course, cannot be described by this
approximation.
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The multiscale approach was first applied to RBC in simple fluids [102]. Other
systems include, e.g., lasers [106] or EHC [48]. For reviews see, e.g., [104, 24, 10].

The order-parameter approach has been applied, e.g., for thermal convection in
simple fluids [103], thermal convection in homeotropically aligned EHC, [107, 108],
and to EHC [50].

It turns out that the linear coefficients are obtained most easily by using the
projection method which, in this case, reduces to an expansion of the growth rate
around the threshold (Chapter 6.2.1). The nonlinear coefficients ¢ and ¢ can be
calculated easier with the multiple-scale method (Chapter 6.2.2).

6.2 Coefficients of the one-dimensional complex

Ginzburg-Landau equation

In addition to the asumptions made in Chapter 5 (adiabatic elimination of the charge
and the velocities, lowest-order Galerkin and Floquet expansions), I consider external
frequencies satisfying (in physical units) wer, << 1 and wory >> 1.

The decisive new nonlinearity of the WEM is the term v - Vo associated with
advection of the carrier density, Eq. (3.28). It can be argued that the saturation of
the +¢. modes of all SM fields is not altered by WEM effects. Furthermore, I neglect
the interaction of the ¢ modes with intermediate modes excited by second-order
SM nonlinearities. This last assumption (whose validity has yet to be investigated)
allows an adiabatic elimination of p and v also for the nonlinear case by generalizing
the effective quantities in Eq. (5.38) to allow for an amplitude dependence. 2

With these assumptions, the Eqgs. (3.28) and (3.29) can be written as

(@t — X,) o — R&2&[(fﬂ) 0:0,n, = —(v-V)o
—  Ra260M M Az, 1)[20,0.n., (6.4)

Oy, R(C?
Az, 1) ( o &(e—ﬂ)aza) , (6.5)

— %@J + (& — 5\71) opn, = —g*
Oq

0

where ¢* = 0.48 for MBBA at wyr, << 1 and for the normalization (6.2) [48].
The left-hand sides contain the linear terms; the quantities A, sl , C’, and ), are

operators which reduce to the corresponding effective quantities A,, ol , C and A,

2This is a standard method in nonlinear optics. If, e.g., in laser-active dielectric materials, the
time scales of the polarization and inversion fields are much shorter than that of the optical field
E, one can introduce an effective dielectric permittivity which is oc (1 + g|E|?)~1 [106].
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Table 6.1: Linear coefficients of the Ginzburg Landau
equation in the approximation Ra? << 1

Quantity Hopf range Stationary range
- -1 1_ﬁ
1 Ra2€q ~ SM ok SM < )\%)
| 2 (- ) A2 0 Lo 2
e 2
52 52 52 _ (M)t (9,07 i
0 0,SM 0,SM 23 02
Ao i 2 _ % ~)) -
b | 2+ g (v - 0,(30,9))
50,
Ug WH -
Ow 52 Ao
B o T ey -
*The first expression is without the approximation R&? << 1
TApprOXimation o << /M
** Approximation R&? << @

of Chapter 5, if applied to the SM modes. For other modes, they are understood
as numbers resulting from the Galerkin approximations for the actual modes (see
below). For the Galerkin approximation (5.39) and (5.40) of critical modes, the
left-hand side reduces to Eq. (5.38).

The nonlinear terms are on the right-hand sides. The only second-order nonli-
nearity is the advection term —v - Vo in Eq. (6.4). The term o d,n, in Eq. (6.5) is
the saturating SM nonlinearity. The other two terms o R describe the saturation of
the coupling from the o to the n, mode, and vice versa. The coupling is mediated
by the charge density and it can be shown [109], that the saturation of the SM mode
is primarily due to the nonlinearities in the charge focussing effect of the director

bend. So I assume that this coupling saturates like the SM mode.

6.2.1 Linear coefficients

The linear coefficients of the CGL (6.3) can be obtained directly by the projection
method. With the ansatz w = Aq_qc(t)'&ei‘”(qwﬁ)t, the eigenvalue problem for the
growth rate of the critical branch can be written as

8151211( = [/\(qc + k, 6) - iw(qca 6)] Ay, (66)
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where k = q¢ — q,.. Taking, in lowest order, the Floquet function @ at ¢ = ¢q,., an
inverse Fourier transformation of the ansatz back to real space results in Eq. (6.1)
with

0 A(x, 1) = [Mq, — 1V, €) —iw(q.,e)] A(z,1). (6.7)

The linear coefficients of the one-dimensional CGL are obtained in terms of the linear
growth rate by comparing Eq. (6.3) with the Taylor expansion of Eq. (6.7) with
respect to ¢. — 70, and € around ¢ = q, and ¢ = 0. The result is 75" = 9.0,
vy = Ogwle, and (1 +1ib) = =202\, where A\ = o + 4w and |[. stands for the
critical point ¢ = g, and € = 0. In addition, one obtains the linear frequency shift,
Aw = w(q,,€) —wy = €0w|..

Table 6.1 gives approximate analytic expressions for these coefficients using Eq.
(5.47) for the growth rate, both for the Hopf regime @ > |A,|, and for the stationary
regime @ < |A,|, separated by the codimension-two (C2) curve.

The Figures 6.1 and 6.2 show the real and imaginary CGL coefficients for I 52
parameters. Remarkably, the correlation time 75 in the Hopf regime is nearly twice
the time in both the SM and in the stationary regime not too near to the C2 curve.
This can be seen directly from the real part of the growth rate (5.47) which is
o = (A + An)/2 in the Hopf regime, while it is ¢ &~ A, in the stationary regime
far away from the C2 curve. For most situations, the ¢ dependence x &* of A,,
Eq. (5.41), is negligible compared to that of A,. This leads to the factor of 2 in
70 = (0eo) 7.

The correlation time goes to zero and the correlation length diverges if one ap-
proaches the C2 curve from the stationary side (Figures 6.1a and 6.1b). This is
caused by the dependence of the square root in Eq. (5.47) on, respectively, ¢ and
q, together with the divergence of the gradient of the square root at the C2 point.
Approaching the C2 point from the Hopf region, the diverging gradient leads to va-
nishing factors of wy in the denominators of the expressins for aa—f, v,, and b, causing
the singularities of these quantities at the C2 point

If the Hopt condition is well satisfied and wyr, << 1, the group velocity v, ~
Rco?%|C has the same sign as the phase velocity wy /g, of the critical mode; the ratio
vy /(W /q:) = C‘l%|c, is slightly smaller than 1, both for MBBA and I 52 (Fig.
5.5). For most parameters, the expression for the dispersion coefficient b is mainly
determined by the negative relaxation term \,/&. For very small recombination
rates or very high mobility parameters, the term o d,(©0,&) becomes important; it
is essentially proportional to the negative curvature of C(q), i.e., positive for both
MBBA and I 52 (Fig. 5.5). The divergence of b at the C2 point is due to the v?

term.
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Figure 6.1 (a)-(c) plots of the real Ginzburg-Landau coefficients 79 and &2 (Table 6.1),
and g (Table 6.2) for I 52 at 45°C and for wyr, << 1. The full lines are for the Hopf
regime of travelling waves and the dashed lines for the stationary regime. Parameter is the
mobility parameter &, where & = 0.01---0.04 is the order of magnitude in the MBBA and
I 52 experiments, and & = 0.1 corresponds to very thin cells.

(d) Nonlinear saturation g along the C2 curve approaching the C2 curve from the Hopf
regime (full line) and from the stationary regime (dashed). Several approximations have
been applied in calculating the nonlinear coefficients, see the main text.
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Figure 6.2 (a) linear frequency shift; (c) group velocity, and (b), (d), the imaginary
parameters of the CGL in the Hopf regime for I 52 at 45°C and for external frequencies
satisfying wgry, << 1. The linear dispersion b is proportional to ZQT‘;, and the nonlinear
frequency shift ¢ is proportional to _alaTWIZ"
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At last, the linear frequency shift is negative, apart from the case of very small
recombination rates or high values of &, where the positive term o @?/wy becomes
the main contribution. This term reflects the dependence of the coupling © = RaC

on R.

6.2.2 Nonlinear coefficients

Now I derive the saturation coefficient ¢ and the nonlinear frequency shift ¢ of the
CGL (6.3) by a systematic multiple-scale expansion. In this method (a pedagogical
example can be found in Ref. [10]), one starts with the ansatz

where u() is given by Eq. (6.1) in terms of the amplitude, and u(") is of the order
of |A(z,t)|". Inserting this ansatz into the nonlinear basic equations assuming

O(0: — vy0:) = 0(9;) = O(|A]") = O(¢) (6.9)

for all derivatives acting onto A, and separating into orders of ¢, 2 ... leads to a
hierarchy of linear inhomogeneous equations of the form é’u(i) = I®. The operator

é contains all linear parts of the basic equations; the inhomogenities 1) are given in

terms of w1V ... u(V) calculated already in terms of A and @ in the previous steps.
These inhomogeneous equations can be solved nontrivially only, if the () are not

in the kernel (null space) of LT, the operator adjoint to L (Fredholm alternative).
These ”compatibility conditions” determine the amplitude equation to the desired
order.

Now I apply this method to the "basic equations” (6.4) and (6.5). The solvability
condition at O(¢) leads to 0;A — 2—2’|08IA + 0(63/2) = 0 defining v, = g—‘;’ .. ° This
result has been obtained already more directly by the projection technique and will
not be shown explicitely here. * The solvability condition at the next order €*/2
determines the remaining coefficients of the CGL (6.3).

Since I am interested only in the nonlinear parts oc |A[*A which are already of
order ¢¥/2, T neglect all derivatives acting on A ("exact resonance”) and show the

systematic expansion by starting, instead of Eq. (6.1), with the zero-dimensional

ansatz®
uV) = A(t)ﬁ(z,wot)ei(qC'xJ’“’Ht) + c.c., (6.10)
. o 1 O'(O) sin z Zq R &QUgeﬁ‘)
_ _1 . o) _ Meltc@0a T
u(z,wot) = ( i ) 5 ( cos 2 > e N —ion | (6.11)

3In stationary pattern-forming systems like RBC or the SM of EHC, the solvability condition
at this order is, usually, fulfilled automatically.

4An example of a nontrivial solvability condition at this order is given, e.g., in Ref. [106].

This is the usual way to derive normal forms for low-dimensional systems (” Landau equations”)
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The inhomogeneous equations at order e read

(at - &g) o® —Ra26'M 9,0.0? = - . v, (6.12)
RC? .

— 00+ (at - /\n) 9,n? =0, (6.13)
Oq

For the Hopt regime, the second-order inhomogeneity is

]’(eﬂ) 2, (eff) x2 )
’U(l) . Vo_(l) _ 77( 4\ ) Ui o {()\Cr + Z-wH>A2622(qc.x—wHt)fl(Z) +ec.c.

82

— 2\/%)\0|A|28Z [C1(z)sin Z]} . (6.14)

The inhomogeneity for a stationary bifurcation is obtained by the substitutions ©? —

A2 and wy — 0. The function fi(z) = (2/7)?[C}(z) cos z —sin 20, (2)] has strong
variations only near the boundaries (it would be equal to 1 for free BC).

This inhomogeneity does not lie in the kernel of the adjoint linear operator and
drives the second-order charge-carrier modes. Solving Eqs. (6.12) and (6.13) with
the BCs 0,003 = nt? = 0 for quasi-stationary conditions (i.e., the dynamics of the
excited modes is fast compared to that of A), results, in the lowest-order Galerkin
approximation, in two types of modes,

2 ¢
u® =@+ u® = ( \/;cos 2z ) A2

0
1 o s
+ 052) ( \/; ) A2e?idextwnt) | c.c., (6.15)
0
with the amplitudes
) ] ]”(eﬂ) 2, (eff) ~2)\J
c@® = I o( A7) T2 (6.16)
462\
) T ]”(eff) 2, (eff) x2 )\J :
Céz) _ T 2(K )*n O[(2§ +LWH)’ (6.17)
2V 202\
the growth rates
M) = —(F +4R.6%), A = (7 + 2iwn), (6.18)

and the projection integrals

‘ 2
Iy = g(cos 2z 0,[sinz C1(2)]) = 0.658, I, = —(cosz Cy(z)) = 0.787. (6.19)
T ™
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Again, the expressions for the stationary regime are obtained by substituting w? —
A2 and wy — 0 in the Eqs (6.15) - (6.18).

Both excited modes are pure charge-carrier modes. The mode u((f) is homoge-
neous in z, so the corresponding effective viscosity 7(f) [Eq. (5.28) for ¢ = 0 and
appropriate projection integrals] diverges. This leads in Eq. (6.13) for very small
q to CA'Q/&{(IGH) = €, a3¢*/(oLn2) times some projection integrals, i.e., the coupling
of o to n, vanishes for ¢ = 0. The o part of ug2) does not excite the director
either, because this mode has no z dependence and the couplings are x d,0 and
d.n,. The inhomogeneity (6.14) excites further modes, e.g., a mode with (o,n,)
(cos 2z, ny sin 2z )e?dextwnt) - These modes, however, relax faster and the couplings
have smaller projection integrals; they will be neglected.

At order €¥/%, the inhomogeneous system for o*) and n,(z?’) reads

Rt o v . Ve® 4 R.a2ol™ ¢ A120,0,n
L =710 = — } (1) 2 . 6.20
_< ngB) > ng|A|2 8:5161 f(ég) 620'(1) ( )

where ; denotes the matrix-differential operator on the left-hand sides of the Egs.
(6.4) and (6.5). The advection term of the excited charge-carrier density is given
(within the lowest-order Galerkin expansion) by

1 :
vV . Ve = §RC&20((1€H) Yoiqs| A? A sin ze'(9e*+@m?) L ¢ ¢ 4 nonresonant terms,

(6.21)
where 7, describes, both for the Hopf (&* = w? + A2) and stationary (wyg — 0)
regimes, the nonlinearities originating from the ¢ modes,

| 2 B+ s N
Yo T Ok A2 ()2 ohi <2)A 9o (6.22)
H o 0 )\0 )\2
7 (K 75 ?
, o= (2T ) 6.23
7 4( qe ) (6:23)

Note, that the prefactor |\, |/[75M(w? + A2)] can be written as Ae/(wr3™)? for both
regimes where the threshold shift Ae is given by Eq. (5.50).

Since the inhomogeneity I® in Eq. (6.20) has "resonant” terms in the kernel
of the adjoint linear operator, there is a nontrivial solvability condition yielding the
Landau equation ;A = eA—g(1+ic)|A|*A, whose nonlinear terms are also that of the
CGL (6.3). The canonical procedure consists in projecting I® onto the eigenvector
of the adjoint linear problem with the eigenvalue A\*. Here I present a more intuitive
approach stressing the concept of the amplitude-dependent effective coefficients that
is equivalent.
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Substituting in Eq. (6.20) the fields (o!), ngl)) = ¢'%%(7,7,) where & and 7, are
given by the Galerkin approximations (5.40) and (5.39), projecting separately the
upper line of Eq. (6.20) onto (2/7)"/?sin z and the lower line onto (2/7)'/%cos z, ©
and adding the nonresonant linear terms, gives a quasi-linear generalization of the
2 x 2 system (5.38),

(0= Xo) Ao(t) +R&oE (1= (15 + g™)|AP) An(t) =0,

2 . , _ s , 6.24

Gy (L= g™ |AP) A,(1) (0= At Z0AR) Ay =0, (O
where A, is related to the CGL amplitude by

A1) = Aqq (£)e0" (6.25)

The determinantal condition of Eq. (6.24) gives, as generalization of Eq. (5.47), the
amplitude-dependent growth rate Anp,

)\O' —I' 5\n + 5\n - )\O' 2 ~ <
i, = 222 PJVL—Z—L—w%l—ﬁv+%WMM%
+ oA, (6.26)

P
3
Il

An —

(6.27)

SM
To

In analogy to the linear case, the amplitude equation is given, to order €¥/2, by Eq.
(6.7) with the Taylor expansion of A replaced by that of Anp, around ¢ = q.,e = 0
and |A|* = 0.

Comparing the Taylor expansion with Eq. (6.3) leads to the nonlinear contribu-
tions

AL
T .
"o|AP?
Evaluating Eq. (6.28) with the Eqs. (6.26), (6.22), (6.23), (6.18), and (6.19) finally
gives the nonlinear CGL coefficients, summarized in Table 6.2.

The Figures 6.1c, 6.1d, and 6.2d give, for I 52 parameters, plots of these expres-
sions as functions of & and 7. The chosen & and 7 values are in the experimentally

g(l +ic)=— (6.28)

relevant range (for 28 um cells of 152, values of & consistent with the measured
Hopf frequency vary from & = 0.011 at 60°C to & = 0.038 at 30°C).

Remarkabally, the saturation coefficient ¢** in the stationary regime is negative
near the C2 curve indicating a hysteretic bifurcation. Intuitively, the advection
"washes away” the o fields thus decreasing the threshold shift connected with them.
For increasing 7, the o field cannot build up to amplitudes causing a significant

This is just the lowest-order Galerkin approximation of the system (6.20).
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Table 6.2: Nonlinear coefficients of the complex
Ginzburg-Landau equation (6.3)

Regime | Coefficient Expression for R.a* << 1

. . P2\, )12
Hopt 4] g+ %GL—%QU

12 (7420
|/\U| 72 2 Ao

0
ge o™ LF+4RC&2 + s J Yo
27—0SM(:)2 |>‘O'| SM
+ [T o |9

: stat _ 27—051\/[(':)2 SM __ (-:12 Ig 5
Stationary g (1 ] g M2 \ FAR.G2 + = ) Yo

threshold shift, and eventually, the bifurcation becomes forward. For increasing &,
the drift velocity of the charge carriers increases with respect to the fluid velocity
at a given ¢, so that the advection effects get weaker causing an increasing ¢*'*'
points with a constant distance r — 7oy from the C2 point. This is true especially at
the stationary side of the C2 curve itself, shown in Fig. 6.1d.

On the Hopf side, the saturation is stronger than in the SM (g > ¢*), and the
frequency decreases with increasing amplitude (b > 0), unless the recombination
rate is very small. The frequency decrease can be made plausible with the help of
the nonlinear growth rate (6.26). For not too high &, the term oc 7,|A|? in Eq.
(6.26) dominates. The real part of v, describes the decrease of the o — n, coupling

at

and leads to a decrease of the oscillation frequency, in analogy to decreasing the
oscillation frequency of a spring by decreasing the spring constant.

6.3 Comparison with experimental results

In this Section, I compare the weakly-nonlinear results of Chapter 6.2 with expe-
riments on 1 52 [42, 30, 31] and with some results of the the group of Rehberg on
MBBA [39, 44, 41, 40].
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6.3.1 Decrease of the oscillation frequency with the control
parameter

On increasing the control parameter above its threshold value in the Hopt regime,
a decrease of the frequency of the travelling rolls was measured. In MBBA, the
decrease, in units of the Hopf frequency, was A™! := —id;’f e~ 2.1 for a 15 pm
cell at wor, = 1.1 [41] and ~ 15 in Ref. [40]. In 152, A™' &~ 11 for a 28 pm cell at
woTy = 1.34 and 49°C [31] was measured. Note that A defines the control parameter

¢ at which a linear extrapolation of the frequency decrease would lead to stationary

patterns.
The theoretical dependence of w on the control parameter is composed of the
2
linear and the nonlinear frequency shifts, i—f = %—f + 8%1”'2 %, where 8%1”'2 = —gc/7o.

For stationary conditions (not to be confused with the stationary regime), the am-
plitude of the critical mode is |A|? = ¢/g***" leading to the theoretical prediction

do 0w _ e (6.29)
de  Ode 719
whith %—‘: and ¢ from the Tables 6.1 and 6.2.

Fig 6.3 shows that the frequency decrease depends rather strongly on 7. The
experimental value of A" = 11 in the I 52 experiments (& = 0.016) is consistent
with 7 = 0.045 corresponding to a recombination time of about 10 sec. This has to
be compared with the result 7. = 20s obtained from the C2 point in Chapter 5.
While this factor of two can be attributed to the approximations (e.g., wor, << 1)
made in calculating the nonlinear CGL coefficient b, further work is needed to clarify
if the strong dependence of A~ and ¢ on 7 is an artefact of the approximations. In
particular, ¢ gets negative for very small recombination rates which is rather unsure.

Generally, the magnitude of the change of the relative oscillation frequency de-
creases with increasing &, in qualitatve agreement with the lower value for MBBA
corresponding to & = 0.025.
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6.3.2 Phase diagrams

The figures 6.4 and 6.5 show, for 152 parameters and for wr, << 1, the ty-
pical weakly-nonlinear regimes in the (&,7) space, predicted by the WEM. The
codimension-two curve |\,| = & separating the Hopt regime from the stationary
regime (labelled with 7C2”) derives already from the linear considerations in Chap-
ter 5.4. With the Eqgs. (5.41) and (5.48), the condition for a Hopf bifurcation can be
formulated as 7 < R.a(C — ae,/o,)/(1 +w™), i.e., there is always a Hopf bifurcation
for sufficiently small reombination rates, apart from extreme values of a.

Neighbouring the C2 curve on the stationary side is a region where the bifurcation
is hysteretic. Further away from the C2 curve, the bifurcation gets forward at the
tricritical curve "TC”, and, in the limit # — oo, the asymptotic dynamics is that of
the SM. For small &, the tricritical curve is approximately given by i = [9- (I3 +
12) /(154 ¢™)]Y/30%3. For a higher SM saturation ¢°™ or a lower ¢, (increasing ¢ /g,
by a factor of four, or more), the TC curve would cross the C2 curve. In this case,
there exists a range of values for & where the bifurcation is forward for all values of
T

In contrast to the SM parameters entering most aspects of the dynamics in the
conductive regime only as relative quantities (o,/0,, etc.), the WEM parameters &
and 7, defined in Table 3.4, depend on the thickness d and on the absolute values
of the SM parameters which are changed by the temperature as a "third control
parameter” besides R and wy. Varying the temperature and using different cells, a
representative part of the phase diagram is accessible with only one type of NLC. The
mobility parameter & o (71 /1 )!/?d™"! can be increased by choosing lower temperatu-
res (increasing v1, decreasing o, ) or by a thinner cell; by contrast, the recombination
parameter 7 o< v1d?/(K117wec) decreases by choosing a thinner cell. Presumably, 7
increases with temperature, for example, by an activation-energy like behaviour of
the equilibrium ion density ng o 7 o« 1/ (Table 3.4).

The cross in the upper left corner of Fig. 6.4 indicates the point in parameter
space corresponding, for an assumed recombination rate of 20 s, to d = 28 yum and
30°C. The thick arrow pointing to the stationary-hysteretic region shows the change
in (&,7) space expected when going to a 56 pm cell at the same temperature. The
experimentally observed bifurcation for such cells is, indeed, stationary, but this
has been used in Chapter 5.5.2 to determine the recombination time. Independent
from the recombination time, however, is the fact that the stationary bifurcation is
hysteretic near the C2 point and that the Hopf bifurcation is always continuous. ”

The dotted arrow shows the change in (&, 7) space caused by heating the 28 ym
I 52 cell to 60°C under the (questionable) assumption of a constant recombination
time of 20 s. If the recombination time decreased with temperature, e.g., in parallel

“There exist measurements on MBBA which have been interpreted as a hysteretic Hopf bifur-
cation [39]. They will discussed in Chapter 6.3.3.
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Figure 6.4 Phase diagram of the weakly-nonlinear behaviour in the parameter space (&, )
for I 52 parameters at 45°C, and for external frequencies satisfying wor, << 1. The
curve labelled with C2 is the codimension-two curve |A,| = & separating the Hopf regime
of travelling waves from the stationary regime. At the stationary side, the bifurcation
is hysteretic in a rather large region bounded by the C2 curve and the tricritical curve
labelled ”TC”. For large 7 or low &, the bifurcation becomes continuous and, in the limit
7 — 00, the SM behaviour is recovered. In the Hopf regime, the product be of the dispersion
coeflicient and of nonlinear frequency shift is positive for very small recombination rates
7 Approaching the C2 curve it becomes negative at the dashed-pointed curve and in the
neighbourhood of the C2 curve there is a small "baloon” bounded by the dashed curves,
where the one-dimensional Benjamin-Feir criterion bec < —1 is fulfilled.
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Figure 6.5 Phase diagram for the same parameters as in Figure 6.4, but for larger values
of & and 7, relevant for thinner cells and/or higher recombination rates. The bending of
the C2 curve is due to the @? term in the growth rate of the ¢ mode, Eq. (5.41). Above
& = 0.018, there are severeal 7 values where the product be changes the sign, but where,
in general, |be| << 1.
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with the director relaxation time (both times are related to activation-energy pro-
cesses), the arrow would point more to the right. For 7. < 5s, one would obtain a
stationary bifurcation at T>60°C, in accordance with some measurements [30, 31].
There are, however, some intricacies connected with this observation which will be
discussed in the next Chapter 6.3.3.

There is a very thin tongue in the Hopf regime (dashed lines in the Figures
6.4 and 6.5) where the one-dimensional Benjamin—Feir (BF) criterion bc < —1 is
fulfilled. Within the one-dimensional CGL, all plane-wave solutions are unstable
against long-wavelength modulations in this region, resulting in spatiotemporal chaos
(STC) [11] for the envelope of the travelling waves. Experimentally, one found in
52 at T > 50°C a Hopf bifurcation to STC. ® At these temperatures, one is,
indeed, nearer to the BF unstable region than for lower temperatures or crosses even
the BF unstable region (arrow with the dashed line in Fig. 6.4), but the range,
where STC is observed, is much broader than this region. The one-dimensional BF
condition, however, is only a sufficient criterion for STC if there is more than one
spatial dimension or if couplings to other critical modes are relevant. For instances,
if the coupling (which has yet to be investigated) is such that a small change in the
coupling coefficients leads to a nonlinear selection of a different mode configuration
(e.g., oblique rolls vs square patterns if the roll angle is not too different from 45
degrees), the BF criterion for STC gets weaker with the extreme case be < 0 [110]. In
the Figures 6.4 and 6.5, the larger region where be < 0 is bounded by the dashed lines
and by the immediate neighbourhood of the C2 curve (not resolved on the plots).
It corresponds semiquantitatively to the parameter ranges where STC is observed in

I 52.

6.3.3 Hysteretic effects
Stationary regime

In the T 52 experiments, stationary bifurcations were always hysteretic, in accordance
with the WEM predictions not too far away from the C2 curve. The amplitude
(maximum director angle) of the nonlinear state right after the jump was found to
be 200 mrad (|Anp| = 0.2) in a 57 um cell at 47°C [31].

Strictly speaking, with a third-order CGL like Eq. (6.3), nothing more can be
sald about hysteretic effects beyond the fact that the bifurcation s hysteretic or
not. Some properties specific to the WEM, however, enable some predictions on this
level. The effects of the o fields always stabilize the system, so an upper limit of the
amplitude |Any| of the nonlinear state after the hysteretic jump is set by the SM
amplitude. Moreover, both the excitation and the relaxation of the o fields take place
on long time scales. This translates to small hysteretic jumps to nonlinear amplitudes

8At lower temperatures, one observed localized (and also irregular) states.



Comparison to the experiment 91

Figure 6.6 Schematic illustration of a hy-
WEM (b) steretic bifurcation from the linear WEM
state (a) to a nonlinear state (b). Ae de-
notes the linear threshold shift separating
the neutral-stability curves of the SM and
the WEM at threshold. Shown is a situa-
tion where, at the point (b), the SM and
WEM amplitudes are not distinguishabel,
i.e., the o fields have no influence on the
nonlinear state.
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where, presumably, the amplitude equation of the SM is still valid. At last, if the
condition for a hysteretic bifurcation is well satisfied by, say, ¢itiy /9™ < —1 (one
is not too near the TC curve), it is plausible that the advection homogenizes the
carrier density in the nonlinear state so that this state is presumably described by
the SM.

With these assumptions, it can be seen from Fig. 6.6, that the amplitude in the
nonlinear state (b) is that of the weakly-nonlinear SM with €™ = R/R™ — 1 equal
to the linear threshold shift,

Ae v

gsM - |)\G|QSM'

|ANL|§tat = (6-30)

The highest jump takes place on the (stationary side of) the C2 curve with Ang|2%,, ~
/(g™ )

The experimental parameters used for the hysteresis measurements in 1 52 corre-
spond to a point near the C2 curve. This can be seen from Fig. 5.10 where the lower
curve is for a cell of a comparable thickness at a comparable temperature. With
oM = 0.33 s and 7. = 20 s, Eq. (6.30) gives at the C2 point the theoretical result
| Ant,| = 0.184.

Hopf regime

The WEM always predicts a continuous bifurcation in the Hopf regime. Indeed, one
observes in I 52, that the initial bifurcation to oscillating states is continuous. At
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a rather small value ¢, however, the travelling-wave state with the amplitude | A;p|
and the finite oscillation frequency wj, < wpy jumps hysteretically to a stationary
state with a much higher amlitude |Any,| (see Fig. 6.7). For d = 28 pum , ¢;, varied
from 0.1 at 44°C to 0.02 at 59°C [31]. At even higher temperatures, a hysteretic
stationary bifurcation was observed as primary bifurcation. Due to the large steps of
the reduced control parameter (ée ~ 0.01) in this experiment, it could not be exclu-
ded, however, that the initial bifurcation is actually a continuous Hopf bifurcation
with a subsequent jump to a nonlinear stationary state at a very small ¢, which
could not be resolved.

In MBBA, the bifurcations appeared continuous in experiments without exces-
sive sensitivity in optical contrast and resolution in e [41, 111, 112]. In other very
careful investigations, primarily devoted to thermal fluctuations below threshold and
discussed in Chapter 7 [44, 39], one observed hysteretic bifurcations to a nonlinear
stationary state. The amplitude was about 150 mrad in the experiment of Ref. [39].
The spatiotemporal correlations of sub-threshold fluctuations in the same cells, howe-
ver, can be explained only by assuming a Hopf bifurcation for the linear dynamics,
with a very small Hopf frequency of wy/(27) = 0.044 s in Ref. [39] and 0.05 s in
Ref. [44] (see Chapter 7 for more details). Can this "hysteretic Hopf bifurcation” be
explained by assuming, again, a continuous Hopf bifurcation in a regime 0 < € < ¢,
which cannot be resolved experimentally?

To describe the dynamics of this scenario with Ginzburg—Landau equations seems
hopeless. One needed a seventh-order (!) CGL, and the amplitudes where the higher-
order terms come into play, would be higher than the range were a CGL description is
even qualitatively correct. By contrast, a semi-quantitative description seems possible
for the hysteresis by exploiting the quasi-linear 2 x 2 equations (6.24) and assuming,
again, that the amplitude of the nonlinear state is given by the amplitude equation
of the SM.

From the determinantal condition of the system (6.24) for zero growth, A = iw,
one obtains, neglecting terms oc |A[*,

Ao .
— w4 ey ( 2) + &2 (1 — (Rew, —I—Zng)|A|2) = 0, (6.31)

To

S _ >M|4|2 ‘
( )—@2Im'yd|A|2 = 0, (6.32)

where v, is given by Eq. (6.22) with wgy replaced by the actual oscillation frequency
w. The roots of the system (6.31), (6.32) determine the generalized neutral curves.
For the oscillatory branch, the result is (Note that €™ = e + |\, |75™)

Cose = g(w)|A|2, (6.33)
w? — w}%[ o |)‘a|g(w) (1 + wc(w)) |A|2, (634)

o Ao ]
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where ¢g(w) and ¢(w) are the nonlinear CGL coefficients in Table 6.2 with wy replaced
by w. For the stationary branch w = 0 one obtains

SM, ,2
Tg W

Ao

Stat A (stat + gStat|A|2, AeStat — . (635)

Figure 6.7 illustrates schematically the resulting hysteresis curves. For small ampli-
tudes, the oscillatory branch has the lowest threshold. On increasing e, the amplitude
is given initially by |A|? = €¢/g and the frequency decreases initially with the rate ‘fl—f,
Eq. (6.29). The bending of the amplitude curve is due to the frequency dependence
of g(w). With g(w) > g > ¢°", this branch has comparatively small amplitudes. The
stationary branch is the same as in the stationary regime; it is extremely hysteretic
since ¢**** (Table 6.2) becomes more negative for decreasing 7 (the dashed curves in
Figure 6.1c have to be extrapolated to 7 < |A,]).

Because of the frequency mismatch, the system cannot cross over from the oscil-
latory curve to the stationary curve at the point B in Fig. 6.7. The actual point
where the jump takes place, has not yet been determined, so the points C and D in
Figure 6.7 are qualitative and based on experiments where the jump takes place at
an oscillation frequency of about half the Hopf frequency [31].

For very small Hopf frequencies as in Ref. [39], an upper bound can be given
for the control parameter at the hysteretic jump ¢, (see Figure 6.7), ¢, ~ A/2
(OT3M)2. € decreases strongly with 7. For 7 = 0.5w, it is smaller than the step size
0e = 0.001 of the experiment so that a forward Hopf bifurcation may go unnoticed.
Besides, the amplitude |A|j2p = €p/9 ~ 13 mrad at the jump is very small; it is
only three times larger than typical rms values in the subcritical regime of (thermal)
fluctuations (!). This is caused by the combined effects of a small value of ¢, and
a high saturation coefficient, g/¢*™ = 6.5 for # = 0.50. In contrast, the nonlinear
amplitude |AnL|*> = (¢p + A€)/¢™™ =~ 100 mrad increases with 7, caused by the
increased linear threshold shift.

6.4 Discussion

The weakly-nonlinear analysis of the WEM agrees qualitatively and sometimes quan-
titatively with the experiments. At first, the calculation of the CGL coefficients
brought two linear results. The correlation time 75 in the Hopf regime is twice that
of the SM while the correlation length is the same in both models. Both results
fit well to experimental values obtained for cells of 13 pm [39] and 23 pm [44]
thickness from the oscillating dynamics in the subcritical stochastic regime. There
seem to be no measurements of 79 in I 52.

The phase diagram of the weakly-nonlinear behaviour agrees qualitatively. In par-
ticular, the Hopf bifurcations are always continuous and the stationary bifurcations
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Figure 6.7 Hysteretic secondary bifurca-
tion in the Hopf regime (schematically).
The curve labelled ”stat” is the statio-
nary backwards-bifurcating branch of zero
growth rate which exists also in the statio-
nary regime. At the point A (where the
amplitude is of the order of |[A] =~ |A,]),
the stationary branch crosses over to the
SM branch ”SM”. The curve labelled
”0sc” is the oscillatory branch starting
with the Hopf frequency. The oscillation
frequency decreases with ¢ until the curve
ends at zero frequency. At the point C,
the state jumps from the continuous Hopf
branch to the nonlinear SM state D.
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are hysteretic if one is near the C2 curve. The observed STC for higher temperatures
in I 52 is compatible with the area in phase space where the WEM predicts be < 0.
This can possibly be explained by a Benjamin—Feir like long-wavelength instability.

Both, linear and nonlinear results for I 52, are compatible with a recombination
time of 10 to 20 s. The decrease of the oscillation frequency of travelling waves with
the control parameter is compatible with 7. = 10 s. The amplitude of the nonlinear
state in the stationary-hysteretic regime requires 7. =~ 15 s. Comparing the C2
curve with the external parameters (cell thickness, temperature, wg) where the Hopf
frequency decreases to zero, gives Tree = 20 s. In MBBA, the condition |\,| < @
required Trec > 1/wy = 3.5 s in the experiment of Ref. [39].

The oscillatory behaviour observed for MBBA in the subcritical stochastic regime,
while a hysteretic jump to stationary patterns is observed above threshold [39], seems
puzzling. Even this seems to be consistent with the WEM assuming a continuous
Hopf bifurcation, but a jump to a stationary state at a small but positive control
parameter ¢, which cannot be resolved experimentally. For typical experimental
resolutions de < 0.001, this implies 7 > 0.4 or 7y < 8 s. The reason for the small ¢,
is the small Hopf frequency where Eq. (6.29) together with the CGL coefficient ¢ in
Table 6.2 lead to ¢, &~ A/2 o (wr3™)?. Recent experiments on the nematic mixture
Merck Phase 5 confirm this interpretation [113].
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An interesting prediction of the theory is that the nonlinear dispersion ¢ becomes
negative for very small recombination rates, i.e., the oscillation frequency should in-
crease with the amplitude (the linear frequency shift can be neglected for small 7),
which has never been observed. Possibly this is due to the dynamics of the excited
charge-carrier modes which become dynamically independent for small recombina-
tion rates so that the CGL is valid only in a very small range of e. The CGL requires
that all excited modes relax much faster than the amplitude itself, 75 'e << |)\(()2)|7
257, or

€ << 17 ~ 2Ae. (6.36)

The CGL of the WEM is valid, if the distance from threshold is much smaller than
the linear threshold shift. For I 52, this gives ¢ << 0.02 (Table 6.3), and in MBBA,
e.g., € << 0.01 for the cell in Table 6.3 assuming ¥ = 0.50. With a typical resolution
of §¢ = 1072, this range is experimentally accessible.
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