Chapter 5

Linear analysis

In this chapter, I present the linearization of the WEM in the conductive range
which is for materials with ¢, < 0 restricted to relatively low external frequencies.
The emphasis lies on approximate analytic results, to see the functional dependence
of the various quantities. After several approximations (well-controlled for usual
parameter ranges), one arrives at a linear 2x 2 normal form for the amplitudes of
the charge-carrier mode and of the critical conductive mode of the SM. Solving this
2 x 2 equation with the ansatz e leads at threshold (Re A =0) for certain ranges
of the system parameters to a nonzero imaginary part wgy which can be identified
as the Hopf frequency. More specifically, the condition for the Hopf bifurcation is
I < R.aC’ (where C' is of the order of unity) and if this condition is well satisfied,
(r < 0.5R.aC” will do for practical purposes), the Hopf frequency is proportional to
& o< y/ptp] and has a functional dependence on the external frequency wy depending
only on SM parameters.

These predictions are compared with two sets of experiments employing the NLCs
MBBA and I 52. The dependence of the Hopf frequency and of the capacitance on
wp agrees nearly quantitatively with the experiments and the fit to the frequency
of the measured travelling waves gives a geometric mean of the mobilities of about
1.6 x 107"%m?/(Vs) for MBBA and of 0.45 x 107'm?/(Vs) for I 52, consistent with
the reported data of Table 3.1. The mechanism leading to a Hopf bifurcation is quite
similar to that of other periodic-oscillatory pattern-forming systems. This will be
discussed by comparing the WEM with three thermal convection systems.

As a "by-product” of this approach, an analytic approximation of the three-
dimensional linear stability analysis of the SM, performed some time ago [47, 48], is

given in the form of a new, intuitive threshold formula.
Readers not interested in the details of the linearization of the SM and the WEM
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46 Linear analysis

(or who are abhorred by longer equations) can start with the 2 x 2 equations (5.38)
in Chapter 5.4, bearing in mind that this system results from the basic equations by
applying a Fourier transform in z, y, and in time, a lowest-order Galerkin expansion,

and adiabatically eliminating the velocities and the charge density.

5.1 Linearization of the WEM equations

We decompose the fields of the scaled WEM model, Eqs. (3.18) - (3.21) into the basic
state Eq. (4.1), denoted by an index 0, and into linearized perturbations, denoted
by a superscipt (). The basic state is a superposition of the trivial basic state (basic
state of the SM together with o = 1) and of the WEM boundary layers which are
denoted by 6,

E = FEy(z,t)e, — Vo (r,t) =[x""V2Rcoswot + §Eu(z,t)]e, — VoI (r,1),

p =bpo(z,t)+ pV(r,1) = 6po(z,1) + o) 4 eaEO@xn,(gl),
o =oo(z,t)+cW(r,1) =14 60o(2,t) + cD(r,1),

n = (1,0,0) + (0,n{",nM"),

v =0,

(5.1)
The charge density of the boundary layers is denoted with 6pg = 0,6Fg, and ¢ =
—6;-]-(71/0)62'6]‘ = —(V? 4+ ¢,0?). The linearized WEM equations are obtained by
inserting the decomposition (5.1) into the Eqs. (3.18) - (3.21) and the BCs (3.23)
— (3.26). For a nontrivial basic state, these equations are rather lengthy. They are
given for normal rolls in Appendix A.2.

In the following, I assume the trivial SM basic state which is a good approximation
if the cell thickness is much larger than the sum of the thicknesses of the two Bls,
2dpr, < 2 pm (Chapter 4). Furthermore, I neglect all diffusivity terms, a good
approximation if the smallest length scale of the rolls is much larger than the Debye
length, 27 /|q.| >> 0.2 um , which is always fulfilled in the conductive range. The
intrinsic time scale of the velocities, given by the diffusion time 7,5, in Table 3.2, is
always negligibly small compared to the director relaxation time, so the velocities can
be adiabatically eliminated by setting (0; + v - V)v equal to zero in the momentum-

balance equations.

After a Fourier transform of the linearized WEM fields u") = (¢("), o), ngl), ngl), o)

uM(r 1) = e 7°(2, 1) + c.c., (5.2)

the equations of the linearized WEM equations for the charge density, the local

conductivity, the director fields n, and n,, the z and y components of the curl of the
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momentum balance, and the incompressibility condition, are given by

[P0, + 6,6+ Eod.7 + | Pral iy + Eod)) + 0o igi. = 0, (5.3)

&2t Eyd, — Jat} 2,8 +[0+ 77+ {ea(éﬂvr?Eg@Z . JatEo)} igm, = 0, (5.4)
e Eoq s + [at Iy . eﬂEg} iqm, + K., pm,

+a3iqd. v, + |aslg*. = 0, (5.5)

— ];’Zyipﬁz + [at + [{’yy} qny + aziqpv, — |az|¢¥iv, = 0, (5.6)
azpd, o, — [a2q2 — oz3p2] Oyimy,
— [(no = m — a2)¢® + ma(p* — 32)] po

+ {ThQQ — (12 — ag — au)p? — %822} quy + {Q(TD —as — %)62} ipv, = 0, (5.7)
— 2 Eoq e, — [(02q® + a382)0; + e, B3 q°] iqm,
+aspqd. 0y + [(no —m — a2)¢” + na(p* = 92)] d.iqu,

+ |:q(7]2 — a5 — %)62} 1qpv, + |:(T]2 — a3 — ag)0? +ma* + gpﬂ v, = 0, (5.8)

2 2
iqU; + 1pvy, + 0,v, = 0, (5.9)

where
¢, = (I+e)®+p* =392 6,=(140.)¢+p*— 32, (5.10)
K., = Kssq® 4 Kpp? — 8%, K., = (1 — Ky)q0.,
K,, = Kss¢*+p* — Kyd?, (5.11)
m = (—aa+as+as)/2, 5= (as+ as+ ag)/2,
o = o1+ a4+ a5+ as. (5.12)
The coefficients 5y, 72, and a4/2 := 53 are sometimes called Miesowicz coefficients

and can be measured directly by simple shear experiments (see, e.g., [25]). The BCs
at z = +7/2 are

b=0,6=m,=m,=0=0. (5.13)

The SM part of this set is given, with a different scaling, in Eqs. (3.2a-f) of Ref.
[48]. The transformations ¢ — 7¢, O — —i7,, b — Ty, Vuy — —iVsy, U, — Us,
V2/7Vet — rwEy, 72/7r2(1 + ¥ty — 7*E2 d — 7, 0; — P1d; in Eq. (3.2a),
pmd?/7* — Py = 0, and €, €1, o1, 71, and Ki; set to unity, brings these equations

into our notation.
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5.2 Approximate analytic approach

Equations (5.3) - (5.9) with 7y = V2R coswyt [see Eq. (5.1) for the trivial basic
state 6FEg = 0] represent a linear system with periodic coefficients allowing the

Floquet ansatz
w(z,t) = w(z,wot) MR = 5, (V) (2) NI R)Fineolt (5.14)

where the Floquet functions @ are 27 periodic in the second argument. Of course,
there are infinitely many branches m = 1,2, ... with growth rates \,,(q, R). The spe-
cial symmetries of the SM (without flexoeffect) lead to a separation of the eigenspace
of the SM modes into four orthogonal subspaces, called TA, 1B, ITA, IIB in [52, 94].
In class I, ("symmetric”), the fields é, n,, 0, are symmetric in z while the horizontal
components of i and ¥ are antisymmetric. In class A ("conductive”), the electric
fields (Z), p, etc. are antisymmetric with respect to a time translation by a half external
period, t — t 4+ 7/wp, and all other fields are symmetric. In class II ("antisymme-
tric”) and B ("dielectric”), the symmetries are opposite. The terms o & in the WEM
equation (5.4) retain this symmetry separations. The o field corresponding to the
[A modes of the SM is antisymmetric in z and symmetric with respect to the time
translation t — ¢ + 7 /wy. The terms o d in (5.4) couple the TA to the IIB modes
and the IB to the ITA modes. In particular, the ¢ field of the IA mode excites a o
field symmetric in z and antisymmetric with respect to ¢t — ¢ + 7 /wy which couples
back to the ¢ field of the IIB mode of the SM. Like the flexoelectric terms [94], the
terms o< d break both symmetries while retaining the symmetry with respect to a
simultaneous reflexion in z and time translation by a half external period. Usually,
the terms o d are small (see Chapter 3.3) and will be neglected in the following.
This corresponds to a linearization of the simpler equations (3.27) — (3.30) together
with the fluid equation (3.21) and the BCs (3.26), instead of the Eqs. (3.18)-(3.26).

To obtain analytic results for the conductive regime (where the IA mode has
the lowest threshold), I apply to the Floquet functions the "lowest-order Fourier
expansion” in time, where only the lowest-order nontrivial TA contributions of each
field are retained [48]. The approximation is justified if 75 >> 27 /wy >> 7, [48] i.e.
necessarily Py = 7,/74 << 1, which is usually fulfilled.

After eliminating v, by the incompressibility condition (5.9), the z dependence of
each field is approximated by a test function satisfying the symmetries and the BC
(which can be seen as a lowest-order Galerkin expansion). Specifically, I represent
the fields by the following lowest-order terms of the combined Fourier expansion in

t and Galerkin expansion in z,
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o sin z
cos z(¢1 coswot 4+ ¢~ sinwyt)
2 | 7l cos 2
w(z,wot) =1/ — ZO)
’ s ng sin 2z
vg(,o) sin 2z

vﬁo)\/?(]l(z)

where ¢t and ¢~ are defined by (compare Eq. (5.14)) ¢t cosz = o) 4+ 1),
¢~ cos z = 1(¢) — 1) and Cy(z) is the lowest-order Chandrasekhar function [73],

, (5.15)

Oy(z) = o8t (hnz)  cos(haz) ) 0y pose (5.16)
! cosh <)\1%) cos <)\1%) r . . .

By projecting Eq. (5.3) onto cos zeF™“o! and the Egs. (5.4), (5.5), (5.6), (5.7) and
(5.8) onto sinz, cos z, sin 2z, sin2z, and Ci(z), respectively, one obtains a 7 x 7

eigenvalue system of the form

P‘(qa R)B(qa Ra WO) - L(qa Ra WO)] (J(O)a ¢’+a ¢’_a ngo)a n?(]O)’ 'U(O)a ,U(O)) =0 (517)

for the growth rate A(q, R).

Although the above approximations may appear rather crude, they nevertheless
lead to quantitatively good results. This is shown in Table 5.1 for the threshold
voltage V. = Vco\/RiiM and the corresponding wavevectors ¢. and p. resulting from
the minimum R, of the neutral surface R3"(q,p). Compared are the analytic formula
for the neutral surface of this work, Eq. (5.21) below, with numerical results, with
the formula resulting from the choice of sin® z instead of (;(z) as test function for
v, and also with the exactly solvable case of "free” BC [48]. Another possibility
consists in representing v, by a test function, e.g., sin2z, rather than using the
(exact) incompressibility condition [48]. Furthermore, one can express the velocities
in terms of the potentials f and g, given as Eq. (2.29), and approximate the z
dependence of f and ¢ by the test functions C1(z) and sin 2z, respectively [95]. The
accuracy is similar to Eq. (5.21); the threshold formula contains more projection
integrals but the representation of v in terms of f and ¢ is preferable as a starting
point for the nonlinear Galerkin analysis. The bottom line is, that it is preferable to
satisfy the incompressibility condition exactly but that the choice of test functions
is not critical, as long as they satisfy the correct rigid BC (2.31).

Within the Galerkin approximation, the adiabatically eliminated velocities can
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Table 5.1: Comparison of different analytic threshold formulas

approximation MBBA I, wor, = 0.5 | MBBA [, wor, =2 | 152, 30°C, wor, = 0.5
V. qc V. qc V. qc Pe
Fa. (5.21) 7.205 1.591 30.95 3.114 14.61 | 1.068 | 0.734
(See also [50])
Ref. [95] 7.375 1.603 33.62 3.24
Ref. [48] 7.382 1.475 17.66 2.125
ta. (5:21) with 7.353 1.619 31.70 | 3.188 | 14.87 | 1.072 | 0.773
sin” z for v
free BC 6.244 1.314 28.02 2.779 | 12.57 | 0.801 | 0.708
numerical result 7.171 1.592 31.81 3.15

then be expressed in terms of "effective viscosities” with the result

%p+ + A <—a2iqn£0) + ag%pn§0)>

v0  — (5.18)
v, . , .
7757 ff) q°
A (aglgipngo) + (asp® — a2q2)n50)>
i = Dl (0) 4 ; (5.19)
q Myy Myyd
The effective shear viscosities r]geﬂ) and 7y, and the effective rotational viscosities

ay and afy are given, together with the other "effective” quantities, in Chapter 5.3;
E = VR/x is the rms. of the external field, and p* is the in-phase part of the
oscillatory charge density. The expression for o s very intuitive and is reminiscent
of the former one dimensional [34] and two dimensional [46] models. For stationary
conditions, the time-independent part pTE of the volume force is balanced by the
viscosity force r]geﬂ) q2v£0), discussed further in Chapter 5.3. A nonzero director
rotation (A corresponds to d;) leads via the orientational viscosities to a further drag
onto the fluid which is, again, balanced by the viscous force.

Apart from very thin cells (d < 10 gm ), the charge relaxation time is also much
shorter than 7, (P, << 1) and the charge variables ¢ and ¢~ can be adiabatically

eliminated as well,

= . - /i off) - € .
pt = e,07 + ¢ EV2ign®Y = —EV2 (02 ) ign® + m0(0)> , (5.20)

where ¢, = (1 + €,)¢> + p* + 1 and o, = (1 + 0,)¢*> + p* + 1 are the Galerkin
projections of the operators ¢, and &,. The SM part —E\/idﬁeﬂ) iqn,(zo) with the




Carr-Helfrich mechanism 51
effective conductivity ol , Eq. (5.23), contains the Carr-Helfrich mechanism which
will be discussed in the following Chapter 5.3. The second part of Eq. (5.20) describes
the charge separation due to the gradients of the total carrier density and gives rise to
a second feedback cycle involving the carrier-density mode. This second stabilizing
feedback provides the possibility for a nonzero Hopf frequency and will be discussed
in Chapter 5.4.

5.3 Carr-Helfrich mechanism and

analytic threshold formula

Above a certain (frequency dependent) threshold for the rms value VR of the app-
lied voltage, the growth rate A(q, R) of the fastest-growing branch with a wavevector
q = (q,p) crosses zero. This defines the neutral surface R = Ry(wo, ¢, p). The global
minimum of Rg with respect to ¢ and p defines the critical wavenumbers ¢, and p. and
the threshold R, = Ro(g.,p.). Inserting the adiabatically eliminated field inhomo-
geneity ¢*, Eq. (5.20), and the adiabatically eliminated velocities, Eqs. (5.18) and
(5.19), into the Galerkin projection of the Eqs. (5.5) and (5.6), and setting ¢(®) = 0
leads to a 2 x 2 eigenvalue equation of the form [é(q))\ + L(q, R, wo)] (ngo), ngo)) =0
where the components of B and L are just numbers (this equation is the SM part of
the 3 x 3 equations in Ap;endiX_A.?)). Since the SM does not lead to an oscillatory
instability, the neutral curve Rg" is defined by A = 0 and the ensuing determinantal
condition Det[L(q, R,wo)] = 0 leads to the result *

) K (eff)
RM = — (5.21)
(eff) azo )
€a (ef)

with the effective orientational elasticity

2[{2
K = g, P (5.22)
q2[‘yy
K.. = Ks3q* + Kop® + 1,
[(yy = ](33(]2 + P2 + 4[(227

](zy = (1 — ](Qg)qjg,

'Here and in the following, the projection integral I = 0.986 of \/2/m cosz and C1(z) is set
equal to one
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the effective anisotropy of the conductivity

() _ _ Ta S G 5.23
a 14 w? (Jq Ja>’ (5.23)
W= wotye, /oy, 5.24)
G = (1+Ja)q2+p2—|—1, €q :(1+6a)q2+P2+1a (5'25)
the effective dielectric constant
-1 ”
eoff) _ 2, .2 O, twWie ‘
6((1 ) = €4 <q +p + 1) (W) s (526)
the effective orientational viscosity coupling the director to the fluid,
1 leyp2f2>
4z =—a + a3 (- , 5.27
R G 620
and the effective viscosity
(eff)
(eff) _ Uk .
n - p2I{zy77zyaé ? (528)
L+ 7> Kyymyyaz
n2 I
ay = —az+ as (p_z — —p) ) (5.29)
q Nzy 4
2,2
. pen; .
T];E M = Nzz — —5 “, (5.30)
A" Tyy
I a4p? M+ ILp?
Ny = T]1+(7]1+T]2+041)q—;+74p—2 o 41p , (5.31)
p? 2« pt + 4p?
My = m+(m +772+041)?+ q_;+n213q74p’ (5.32)
I 44 p°
Ny = (M +ne+a— 044/2);]9 + n21p qu ; (5.33)
(5.34)

where 19,11, and 1, are given in Eq. (5.12). The projection integrals are given by

]1 - —(Cl,afCH) - 12465,
I, = %<cos z,0,sin2z) = 0.848,
I, = \/2(Ch,0.5in22) = 11119,

(5.35)

where (...) stands for the integration over z from —7 /2 to = /2.
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Figure 5.1 The dependence of the effective conductivity anisotropy, Eq. (5.23), and of
the effective dielectric anisotropy, Eq. (5.26), on ¢, p, and wy.
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Figure 5.2 (a) The effective orientational elasticity, Eq. (5.22); (b) the effective viscosity,
Eq. (5.28). The divergences of KC®) for ¢ — 0 and of ") for ¢ — oo lead to a finite,
nonzero qe.
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Figure 5.3  Contour plots of (a) the neutral surface, Eq. (5.21), and (b), the product
K () p(ef)  The parameters are for I 52 at 30°C. The external frequency wotg = 0.5.

Equation (5.21) is written in such a way that the major effects contributing to

eff)

the Carr-Helfrich mechanism are separated out. K(f) describes the elastic torque

on the director, which, at threshold, is balanced by the electric forces due to charge
accumulation o () %’ and due to the dielectric anisotropy, o< eleff) E.

For ¢, < 0, the dielectric energy has a minimum for n - E = 0. The main
contribution of the dielectric torque, €,7*F2(t)ign, in Eq. (5.5), tends to align the
director perpendicular to the undistorted electric field. Additional contributions

due to field distortions (V¢ # 0) lead, in the lowest-order Fourier and Galerkin
expansions, to a total dielectric torque el WQEQianO) thus defining ™ . As shown
in Fig. 5.1, M s essentially equal to ¢, for all ¢, p, and wg. For ¢, < 0, this
contribution is stabilizing.

With the help of the Eqgs. (5.18) and (5.20), the dominant contribution of the
Carr-Helfrich part |a;|¢*D, of the director equation Eq. (5.5) with v, can be written

as
eff 2. 0
(Carr Helfrich) _ a20—((1 ) 7T2HE lqng ) (536)
77(6 )

Carr Helfrich 14 a1 electrically induced torque onto the director that acts indirectly via

the fluid (compare the Figs. 5.4 and 5.12): A director bend leads via the conducti-
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vity anisotropy to a divergence of the electric current (with the main contribution
o.Fo(t)ign, in Eq. (5.3)), which gives rise to a charge accumulation and to a volume
force pFE onto the fluid. In the lowest-order of the Fourier expansion in ¢, only the part
o pTE of the volume force not oscillating with the electric field, and deriving from the

in-phase part of the accumulated charge density, sets the fluid into motion. So I defi-

ned 0! to be proportional to the SM part of Eq. (5.20), p*™ = — o) F\/ﬁiqngo). In
the stationary case, the non-oscillating part o E27r2iqngo) of the volume force is
balanced by the viscous forces of the rotating fluid which can be written as n,(fﬂ) q2v£0)

,Eeﬂ) . The velocity gradients of the fluid lead wvia the rotational vis-

(0)

cosities to a torque onto the director which I wrote as —ayq®v;’ defining ay. For

thus defining 5

az =0 (a3 = —ay), and with the Fourier and Galerkin approximations, this is just

the contribution a2¢*v, in Eq. (5.5). With DS —) WQEQianO)/(nQeH) q?), this

contribution is equal to Eq. (5.36) with 5T substituted by ngeﬂ). In addition,

the total destabilizing Carr-Helfrich contribution (5.36) of the torque contains the
Fourier and Galerkin approximations of the coupling term —K,,pn, in Eq. (5.5).

This term can be put formally into the definition of 5" leading to the difference

(eff) (eff) _

between n and 7

The fact that only the in-phase part of p is relevant, leads to the denominator
(1 +w™) in Eq. (5.23) for affff) making the Carr-Helfrich effect less effective for
increasing external frequencies (7™ in Fig. 5.1). On the other hand, the effec-
tive viscosity decreases monotonically with increasing ¢ (Fig. 5.2) approaching the

asymptotic value 1y = (a4 + a5 — a3)/2 for ¢ — oo and making this aspect of the

2

Carr-Helfrich mechanism more effective for large wave numbers. This explains

the increase of the critical wavenumber ¢, with increasing wy, and the existence of

a "cutoff frequency” for ¢, < 0. On increasing wg, the strength of the Carr-Helfrich
(eff)

effect decreases due to the decrease of o, ' ; to overcome the stabilizing and essen-

(eff)

tially ¢ and wo independent dielectric effect (e; ’ in Fig. 5.1), ¢. increases with
increasing wy. The effective viscosity, however, remains finite for ¢ — oo. As a result
there exists, for €, < 0, a finite cutoff frequency weuors [45], where the Carr-Helfrich
mechanism cannot overcome the dielectric force even for ¢ — oo and where R

diverges for the conductive mode. For a discussion, see, e.g., Ref. [48].

(eff)

In general, 7 decreases with the roll angle arctan(p/q) for constant ¢ (Fig.

5.2) while the behaviour of ol depends on the external frequency. For low (high)

2For a negative Miesowicz coefficient 1y = (as+ s+ ag)/2, the effective viscosity would become
negative for ¢ values smaller than some ¢,,;,. Note, however, that positive definiteness of the
entropy production (2.17) leads to the Miescowicz coefficient 1, > 0 [58] and forbids this unphysical
behaviour.
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(eff)

external frequencies, o5 ' increases (decreases) favouring oblique (normal) rolls, see
Fig. 5.1. For some NLCs (I 52, but not MBBA), the product of the restoring forces
K 5 has a minimum for nonzero p. (Fig. 5.3). In I 52, this leads to oblique
rolls except for very high frequencies where o) strongly favours normal rolls.

For ¢ = 0, Eq. (5.21) becomes R$M = K(f) /¢, which is positive (i.e. corresponds
to a threshold) for ¢, > 0. Usually, the effective restoring force K{®) increases with
p and the minimum of RJ¥(¢ = 0,p) lies at p = 0 corresponding to the usual
Fréedericksz effect. If the value of the twist module is extremely low, K/ K33 <
0.298,  the minima of K®) (¢ = 0,p) and of R{¥(q = 0,p) are at a nonzero wave
number p corresponding to the "periodic splay-twist transition”, as decsribed e.g.,

in Ref. [48].

5.4 Charge separation mechanism and

Hopf frequency

5.4.1 Coupled equations for the director bend
and the charge-carrier density

As in Chapter 5.3, T substituted the adiabatically eliminated ¢*, Eq. (5.20), and
the adiabatically eliminated velocities, Eqgs. (5.18) and (5.19), into the Galerkin
projection of the linear basic equations (5.4), (5.5) and (5.6), but this time I retain
the amplitude o) of the charge-carrier-density mode. This leads to a 3 x 3 eigenvalue
system for the linear growth rate A with the eigenvector <a<0),n£0),n§,0)> which is
given explicitly in the Appendix A.3.

Near threshold, where the reduced control parameter

R
=——1 5.37
=1 (5.7
satisfies € << 1, this system can be further reduced systematically to a 2 x 2 normal
form for the amplitude A, (¢) of the SM mode and the amplitude A,(t) of the charge-

carrier mode (see Appendix A.3),

A, = M(R)A, — 62Rol™ A,,
B A, B (C2) A, + M(R)A,.

(eff) \14w™

a

(5.38)

)

3This value is the result for the Galerkin approximations. The problem is exactly solvable with

the result Ky5/Kas < (83 + 50)'/? = Bo = 0.303 with By = 72/8 — 1 [96].
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The critical SM mode A, (t) is the amplitude of the director bend with a small

admixture of twist,
iqn,(z,1) cos z _
_ = ) A1), (5.39)
qny(z,t) o, sin 2z

where «a,, = ingo)/ng(,o) is given by the eigenvector of the 3 x 3 system (A.5) - (A.7).

The charge-carrier mode is given by
o(z,1) = A,(t)sin z. (5.40)

Neglecting some small terms o asp, the growth rates A, and A, of the charge-carrier

and SM modes, and the coupling coefficient C', are given by 4

&’ Re
A, = —[F4—""0 ) —F 5.41
(P4 s = (54
€
An = v (5.42)
. K P2 K., Ao
C? = — 2 (P4 0 5.43
K ) ), 75M< Z+q2[&’22)\0y v ) (5:43)

2 )\ 2, (eff)
2 ool (1 _ iaﬁ) ( _ L) | (5.44)

agnffﬂ) K.,

o2 = 2abal () @), (5.45)
Y 9 (eff) - 2 '
G472z Ayy

and the zero-field growth rates g, and Ag, are given by

K.l Ky
Ao- = S (eff) o7 Aoy = = (cff) al? 212, 1y (5.46)
R o (1-52) - e
For normal rolls K¢ = K, and M = —1/Xo. so that C? = C? is equivalent to the
normal-roll expression in Ref [92], if one identifies D with 1/Lp,. ® The question
may arise whether the denominators proportional to (r]geﬂ) — a3) in the growth rate

Xo- (and thus in C?) can become zero or negative leading to unphysical results.

This question is most critical for ¢ — oo and p = 0 (Fig. 5.2), where, in physical

4Due to a different scaling of the voltages and the time, the definition of C differs from that
used in the Refs. [92] and [42] by a factor of (a,/0(%)/2.
"There is a printing error in Eq. (38) of Ref. [92]. The factor (1 — Z—‘;Lnnqz) should be replaced

by (Lnn - Z_:qz)~
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units, 71 > «a%/7; is required to avoid unphysical results. It can be shown that
the requirement of a positive fluid contribution —Ti?ajvi of the entropy production
(2.17) leads indeed to n1 > a3/v1 ©

5.4.2 The dynamics of the charge-carrier mode

The charge-separation mechanism of the WEM leading for low recombination rates
to a nonzero Hopf frequency, can be explained essentially with the help of Fig. 5.4,
Eq. (5.20) for the adiabatically eliminated charge density, and the 2 x 2 system
(5.38). Like the Carr-Helfrich effect, this mechanism is active also for DC.

Consider Ey > 0 and a region in the cell where the director bend A, is negative
which is connected by Eqgs. (5.20) and (5.39) to a positive SM part of the charge
density (left side of upper picture in Fig. 5.4). For z > 0, the gradient of the density

6The contribution 1 — a2/ is sometimes called ns, e.g., in Ref. [58].
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of the upwards drifting positive carriers is negative and that of the downwards drifting
negative carriers is positive. Migration of both species leads, for z > 0, to an increase
in the total number density o(r,t) of the carriers, illustrated by the shading (dark
corresponds to a high density). The sign of the effect (accumulation or depletion
of the carriers) depends on the signs of d,p and Fy. This means, in the conductive
regime, that the excited charge-carrier density mode o(r,t) is antisymmetric in z
and does not follow the external oscillations in the lowest-order Fourier expansion
in ¢ (compare the upper and lower part of Fig. 5.4). This justifies the ansatz (5.15)
for the ¢ mode and Eq. (5.40) for the amplitude A,. Within the ansatz (5.15), the
driving force for the A, mode is proportional to p*, 9;A, = &2W2fp+/\/§. The SM
part of Eq. (5.20) for the adiabatically eliminated pT leads to the term —&2Ro( A,
in the upper line of Eq. (5.38). The WEM part leads to the part o< &* in Eq. (5.41)
for the relaxation of the ¢ mode.

The stabilizing feedback of the A, mode on the charge density and on A, is
mediated, in the basic equation (5.4), by the WEM part F,0,7 of the divergence of
the current. Together with the relaxational part it decreases the accumulated charge.
With adiabatically eliminated charge density and velocities, this is equivalent to a
decrease of all SM fields, and the WEM part of V - J leads to the first term in
the equation for d;A,. This term is positive, but since the director bend A, is
proportional to —p*, the feedback is indeed negative, i.e., stabilizing. It leads to
a nonzero Hopf frequency, provided the A, mode can build up sufficiently, i.e. the

relaxation of the o mode is sufficiently slow. 7

5.4.3 Hopf frequency and threshold shift

The growth rates of modes e in (5.38) are given by

)\cr + )\n \/()‘n - )‘0)2 ~
A= — 02 4
5 + 1 o (5.47)
with
. R.aC
w0 = o (5.48)

The condition for a Hopf bifurcation at threshold (ReA =0, ImA = +wy # 0) are

“To put it anthropomorphically for normal rolls: If the A, mode builds up sufficiently, it is
more advantageous for the Carr-Helfrich mechanism if the SM fields were shifted to the left or to
the right. The travelling velocity (proportional to the Hopf frequency) is determined by the rate
at which the A, mode can build up at the new location. This rate is proportional to a.
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Figure 5.5 Plot of Eq.(5.43) for the coupling factor C' in the 2 x 2 equations (5.38). (a)
is for MBBA parameters and p. = 0. The dots on the curve give, for wor, = 0,1.0, 1.5,
and 2, the actual value of ¢, where C' is calculated. The three curves in (b) are for I 52
at 30°C with p. values corresponding to wyr, = 0, 1.25, and with p, = 0 corresponding
to wor, > 2.0. The kink at the Lifshitz point wyjr, = 2.0 in the dashed trajectory in (b)
translates into a kink in the curves for the Hopf frequency in Fig 5.11a). The slope % is

the main contribution to the group velocity g—‘;’
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Figure 5.6 Hopf frequency fi = (27) 'wy in physical units, Eq. (5.53), as a function
of the external frequency for the parameter set of MBBA 1 with o, = 1078(Qm)~! and
d =13 pm (as in Ref. [39]), and an assumed recombination rate of 7. = 74 (i.e., 7 = 1).
Parameter is the geometric mean of the mobilities with the values, from left to right,

10,5,2,1,0.5,0.2, and 0.1 in units of 1071%m?/(Vs). For other values of d, o, \/NINL

and Tyec, the form of the curves (especially the codimension-two point where wy — 0)

scales With TP x @/F ‘/;LI;LITreC/(,/UJ_dS), and the Hopf frequency scales with

plnt/(\ford®).
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An = —A, and |)\,| < @ which sets an upper bound on the recombination rate. The

resulting Hopf frequency is

)\ 2 7 2
wir =& 1-(4) ~ O 1—<7>, (5.49)
w w

and the condition A,, = —), leads to a threshold shift
R { No|msd m Frg™ A <@

~2_ _SM ~2__SM
W™ T ~
0~ Ao| > @

Ae =
SM
R

: (5.50)

W Tg

Pl 7

where all quantities are taken at threshold. The only source for a shift of the wave
vector with repect to the SM model lies in the ¢ dependence of A, which is pro-
portional to &* and extremely small, in accordance with experiments [39], see also
Chapter 6.3.3.

The approximations in the Eqgs. (5.49) and (5.50) are valid for R.a%/(1+w') <<
7. For the I 52 experiments, R.a?/(1 4+ w'®) is of the order of 0.01 or smaller and &
is of the order of 0.2; so there exists a fairly large range where this approximation is

fulfilled.

For ¢, = a3 = p = 0, the expression (5.48) for & simplifies to

ot = ar/ (.. — 1)/ 0a. (5.51)

5.4.4 Dependence on the system parameters

The Equations (5.48) — (5.50) are the main analytic result of this Chapter. Apart
from the SM parameters, they contain the mobility parameter & and the recombi-
nation rate 7 in units of the inverse director relaxation time. In physical units, the
Egs. (5.48) and (5.49) read (in the approximation A, << )

—2 + -
~ phys — CeOeJ— 14 Hipy 5.52
w ™ d3 1 + w/Q 710_2q7 ( : )

1
WS = @Phys\/1—(7 (5.53)

7_1rec‘~‘~)phys)2

while Eq. (5.50) is valid for physical units as well. This implies the following pre-

dictions.

e The Hopf condition scales with d_B(Jiq)_l/Q. This means, that a Hopf bifur-
cation is favoured for thin cells and low conductivities, i.e. for clean materials

and/or low temperatures. If the condition is (fairly) well satisfied, the Hopf

-1/2

frequency scales with d=*(¢{") as well.



Comparison with experiments 63

o If the Hopf condition is well satisfied, the Hopf frequency wy ~ & depends only
on one combination of non-SM parameters , \/uTpu7, and this dependence is
of a simple multiplicative form. Actually, as shown in the inset of Fig. 5.8, the
influence of the recombination can be neglected (i.e. the Hopf condition is " well
satisfied”) if 7 is smaller than about half the Hopf frequency for zero external
frequency. One could, at least in principle and when the SM parameters are
known, "measure” the geometric mean of the mobilities by measuring the Hopf

frequency.

e The function &(wp) is proportional to C'(g(wo))Re(wo)/(14+w™), a fixed function
for a given NLC at a given temperature containing only SM parameters. The
dependence on C' is rather weak, so the behaviour of & with wg is primarily
determined by the factor R./(1+w'?). This factor is nearly constant for ¢, = 0
(compare Eq. (5.21) with R. &~ R®), but increases (decreases) with wg for
€. <0 (€, >0). For e, = ag =p=0, Eq. (5.51) implies that ©, in units of the

zero-field relaxation rate (75™)~! of the director, is equal to &v/a ) /o, times a
factor of the order of unity (see Fig. 5.2). This order-of-magnitude estimate

remains valid for nonzero values of ¢,, as, and p.

e The threshold shift increases with 7 to a maximum of Ae = 7i"@ at the
codimension-two point (|\,| = @) of travelling rolls and stationary rolls (Ae ~
3 % for 152.) For higher 7 (stationary-roll regime), the shift Ae = 75Mo? /7

decreases and goes to zero in the SM limit 7 — oo.

5.5 Comparison with experiments

5.5.1 Travelling normal rolls in MBBA

Travelling rolls in MBBA were observed e.g., in [40, 41, 97, 98]. The advantage of
MBBA for testing the WEM is the fact that all SM parameters are known and there
exist also some reported data for the mobilities (Table 3.1). In this subsection I test
the WEM on the results of Rehberg, Rasenat, and Steinberg [41]. The thickness of
the cell was d = 15 yum and the cutoff frequency at about 450 Hz corresponds to
o, =4 x 107%(Qm)~!. Their Fig. 4, containing the results of the Hopf-frequency
measurements, is reproduced here as Fig. 5.7 (Courtesy of I. Rehberg). Travelling
waves were observed for all frequencies. Comparison with the inset of Fig. 5.8
suggests that the unknown recombination rate is sufficiently small (7 < 0.3 or 7! <

rec

0.37;") to assume wy = @. Another experiment described in Chapter 6 [39] leads
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Figure 5.7 FExperimental results for a 15 um cell of MBBA for the Hopf frequency
(crosses) and the threshold voltage (solid diamonds for the conductive regime and open
diamonds for the dielectric regime). The figure is taken from Ref. [41] (Courtesy of L.
Rehberg).

to the stronger condition 7 < 0.1 (7ree > 3s), and supports this assumption. At
fo =190 Hz (wor, = 1.1), the measured Hopf frequency wpy/(27) was 0.345 Hz.
Fitting v/t in the WEM prediction (5.52) leads (at 25°C) to

(MBBA) o
I = 1.6 x 107°m*/(Vs), (5.54)

consistent with the values given in Table 3.1.

Figure 5.8 shows the WEM prediction for the Hopf frequency as function of
the external frequency for the above mobilities and a vanishing recombination rate.
The comparison with the measured values of Fig. 5.7 shows nearly a quantitative
agreement. Note, that once \/uT u7 is fixed, all other points of the theoretical curve
are determined by the known SM parameters (Appendix A.1).
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Figure 5.8  Hopf frequency (solid lines) and threshold voltage (dashed) as function of
the external frequency for a MBBA cell with the parameters of Ref. [41] (parameter set
MBBA I, Appendix A.1 with oy = 4 x 1078(Qm)~! and d = 15 ym ), to be compared
with Fig. 5.7. Shown is the whole conductive regime. The experimental crossover to
the dielectric mode at V, ~ 80V is shown schematically as dash-pointed line (it is not
calculated). The scaled frequency wor, = 1.1 (vertical arrow) corresponds in physical units
to about 190 Hz (vertical arrow in Fig. 5.7). In the main plot, a negligible recombination
rate (in fact 7 < 0.3), is assumed and the geometric mean of the mobility is fitted to the
measured Hopf frequency [41] of 0.34 Hz at wy/27 = 190 Hz (wyr, = 1.1) with the result
(ptu)'? = 1.6 x 107'%m?/(Vs). The inset shows the effect of a nonzero recombination
while the other parameters are unchanged. The recombination parameter is, from left to
right, # = 0.3,0.5,0.7,1,2,5, and 10. The curve for # = 0.3 can be hardly distinguished
from that for 7 = 0.
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Figure 5.9 Threhold voltage V. and an-
gle ©® of the wavevector with respect to
the director, as a function of the dimen-
sionless applied frequency wyr, for the I 52
experiments of Ref. [42]. (a) V. for
T = 30°C (circles, solid line) and 45°C
L (diamonds, dashed line). The symbols
(lines) are the experimental (theoretical)

Ve (Vims)

§ result. The wyr, — 0 limit is used to
GE)) 4 determine the temperature dependence of
k=) 0./01, given in the Appendix (A.1). (b)
© O for T = 45°C. The temperature depen-
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5.5.2 Travelling oblique rolls in I 52

The NLC I 52 is more stable than MBBA and the drift in time of the material pa-
rameters (especially the conductivity) is slow compared to MBBA or Phase 5 [78].
This enables quantitative measurements at different temperatures. Since o, the
viscosities, and ¢, have a rather strong temperature dependence, one obtaines qua-
litatively different Hopf-frequency curves (as function of the external frequency) for
different temperatures. Provided that the temperature dependence of the material
parameters is known, one can test the WEM on several curves without introducing
new unknown parameters.

The experiments were performed by Dennin, Ahlers, and Cannell with cells of
28 pm and 57 pm thickness for six different temperatures [42, 30, 31]. In contrast to
MBBA, the bifurcation is to oblique rolls, apart from very high external frequencies
(Fig. 5.9). Unfortunately, the relative conductivity anisotropy o,(T)/o.(T), two
elastic constants, and three viscosities, are not known for I 52. They were fitted to
the threshold curves and the curves of the roll angle for all six temperatures. Typical
examples of the fits are shown in Fig. 5.9.

Eq. (5.52) predicts @ JII/Qd_B. If © > 2|A,|, this is approximately valid
for the Hopt frequency as well. Figure 5.10 compares results from the 28 pym cell
with that from a 57 pm thick cell of slightly different conductivity, both at 50°C.
We find the expected scaling with d for high values of wg where, indeed, © > 2|, |
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Figure 5.10 wpo'/2d® as a function of
woTy for one cell of thickness d = 28 ym
' ' ' ' ' ' and 0 = 8.5 x 107 ohm™' m™! (triang-

S 'Y g v? v | les) and one with d = 57 ym and o, =

o ¢ 1.1x 1078 ohm~! m~! (circles) taken from

< 0T o |52 1 Ref. [42]. Both cells were at T = 50°C.

o * For high frequencies the data scale as pre-

S ob eeee | . ' o dicted by the WEM: wy « 0~ /2d=3. The
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sharp decrease in wgy as wq is decreased
for the thicker cell is predicted by the
WEM and fixes the unknown recombina-
tion rate.

Figure 5.11 Measured and calculated va-
lues of the Hopf frequency wg as a func-
tion of wyr,. (a) is for T = 30 (circles),
35 (squares), and 40°C (triangles). (b) is
for T' = 45 (diamonds), 50 (triangles), and
60°C (circles). The corresponding results
for the WEM model are shown by the so-
lid lines. In both (a) and (b), the abrupt
change of slope in the theoretical curves
corresponds to the Lifshitz point.

wsect)

(which can be shown a posteriori after determining A,). While Ji/QdB differs by a
factor of 9.6 between the two cells, the product wHJIL/Qd:)’ differs by less than 10
% for high values of wy. The relaxation rate 7! can be found with the help of
Eq. (5.53) by identifying for the thick cell (index 1) 7,0, = &P at the external
frequency where the Hopf frequency goes to zero (wor, = 0.7 in Fig. 5.10). Since
w%lgs ~ OEM® = 9.60P™" for the thin cell (index 2), the recombination rate can be
determined by measuring the Hopf frequency of the thinner cell at the same scaled
external frequency, Trec = 1/ ijhys =9.6/ Cu.g’hys ~ 20s. Presumably, the recombination
rate does depend only on the temperature and not on the cell thickness, so this is
the recombination rate for both cells.

Fig. 5.11 shows the measured and predicted Hopf frequencies for a thin d = 28 ym

cell as function of the external frequency with six temperatures as parameter. The
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relaxation time calculated above corresponds to w/|A,| > 3 for any temperature and
external frequency, so the theoretical wy ~ @& is computed using Eq. (5.53) with
only one adjustable parameter, \/utpu7, for each temperature. The fitted values

increased monotonically with 7" and were all in the range (see Table A.2)

(I52)
Vet =1(0.40...0.47) x 107"°m?/(Vs), (5.55)

The discrepancy (up to 15%) at the lower temperatures (Fig. 5.11a) is related pri-
marily to experimental uncertainties in the very small measured conductivity. For
most of the data, experiment and theory agree to within 5% of wy.

The WEM captures a number of features of the experiment which are independent
of the uncertainties in the material parameters. Both in the model and the experi-
ment, the wy dependence of wy is determined mostly by ¢,. For ¢, <0 (T < 60°C),
wy increases with wg, and for ¢, &~ 0 (7" = 60°C), it is essentially constant (Fig. 5.11).
In addition, the model predicts wy o Jll/Qd_B. The correct dependence on tempe-
rature in Fig. 5.11 reflects the 011/2 scaling. Note that o, varies by a factor of 5 over
the temperature range 30°C < 7' < 60°C. Fig. 5.10 shows the correct d=2 scaling
for two cells with a ratio of d® of about 8. The decrease of wy to zero for the thicker
cells is predicted by the WEM as well. It fixes the recombination rate. Since, to
my knowledge, there are no independent quantitative measurements of 7., this last
aspect can be considered only as a qualitative agreement. Further work is needed to
test the theory in this regime since (in contrast to MBBA) an extremely fine tuning
of Tpec 1s required to match the experiment. This is the result of the nearly vanishing

dielectric anisotropy.

5.6 Comparison with other systems showing a
Hopf bifurcation

I rely on intuition
A. Einstein

A characteristic feature of the WEM is the interplay between a primary instability
mechanism and a slower stabilizing mechanism as shown in the top row of Fig.

(eff)

5.12. A negative director bend —igén, leads via o," ' to a charge accumulation
6p and to an electric volume force driving the fluid motion éw. The orientational
viscosities close the destabilizing feedback loop by coupling back velocity gradients
to the director bend. The gradients of the charge accumulation, however, excite also

the charge-carrier mode whose feedback tends to decrease the charge. This second
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mechanism is only relevant if the ¢ mode can build up, i.e., the relaxation of this
mode (symbolically shown by the arrow with the broken line in the diagram in the

top row of Fig. 5.12) is slow.

As shown in Fig. 5.12 for three systems of thermal convection, this interplay
seems to be a common scenario for generating travelling waves by a Hopf bifurcation
The primary destabilizing mechanism in all three systems is that of the ”classical”
Rayleigh—Bénard convection for isotropic one-component fluids. The buoyancy force
of a volume element of hotter fluid (66 > 0) acts as driving force for the fluid motion
0v which, in turn, advects this element into colder regions thus increasing the relative

temperature difference and the buoyancy force.

In thermal convection in a homeotropically aligned NLC cell (second row in Fig.
5.12), the fluid motion excites, in addition, a director distortion én . If the anisotropy
of the thermal conductivity is positive (which is nearly always the case), this leads
to a positive divergence of the thermal heat flux in the warmer region, i.e., to a
cooling of this region corresponding to a stabilizing feedback [99, 61]. The relaxation
time of the director is larger than that of the fluid and the temperature by factors of
Tyise/Ta & 10%, and PT,;./74, respectively (P is the Prandtl number and 7, is defined
analogously as in the planar geometry).

In the "thermohaline” convection experiments in salt water (third row in Fig.
5.12), the BC are such that in the basic state, besides the imposed temperature
gradient, there is a gradient of the salt concentration with a higher salt concentration
near the bottom [100]. So, the fluid element is not only transported into colder
regions increasing the relative temperature difference and the buoyancy caused by
thermal expansion, but also transported to regions of a lower salt concentration
increasing the relative salt concentration and leading to a negative contribution of
the buoyancy (the density of the fluid increases with the salt concentration). The
time scale of the concentration field is set by the molecular diffusion time 7p = d*/D
of the salt concentration (where D is the diffusion coefficient), which is very long
compared to other time scales (note that neglect of molecular diffusion, as done in

this chapter for the charge carriers, corresponds to an infinitely long diffusion time).

At last, the bottom row of Fig. 5.12 shows thermal convection in a binary mixture
of fluids for the case where the Soret effect leads to a negative separation ratio
¥ [22, 54, 9], i.e., temperature inhomogenities induce a mass flux < VT of the
more dense component, which is directed towards the warmer regions. The BC of
impenetrable walls together with the imposed temperature gradient lead in the basic
state to a linear concentration profile where the concentration of the heavier fluid

component decreases with z. The stabilizing concentration mode [101] is excited in
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two ways, i) by advection through the concentration gradient of the basic state, as
in the thermohaline system; ii) directly by the Soret effect where the temperature
inhomogeneity of the linear mode induces a flux of the more dense component into
the warmer regions. The time scale of the concentration mode is governed by the
concentration diffusion time 7p, related to the thermal diffusion time 7, = d*/k (& is
the thermal diffusion coefficient) by the ”Lewis number” £ = 7, /7p which is &~ 1072
or smaller for liquid mixtures.

The parameters —t) and £ are, in some way, the analog of & and 7 in the WEM.
The excitation of the concentration mode (of the WEM carrier density mode) is
proportional to —t (&?), while its relaxation is proportional to £ (7). A Hopf
bifurcation occurs if /=¥ > ¢; L (& > cy7) with ¢, ¢; of the order of unity, and if
the condition is well satisfied (and /=% <= 0.3), the Hopf frequency is oc /=t
(x @&); see, e.g., Fig. 5.2. in Ref. [9] for binary mixtures. In contrast to the
WEM, the interesting parameter ranges near the codimension-two curve or near the
tricritical curve are, at least for usual liquid mixtures, extemely narrow (typically,
0 >t > —107*) and therefore experimentally hard to attain.
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Figure 5.12 Comparison of the WEM mechanism to that of three Rayleigh—-Bénard systems
which also show a Hopf bifurcation, at least in certain parameter ranges. In each case,
the basic destabilizing feedback cycle (straight lines) is coupled to a stabilizing one with a
slower time scale (curved lines). The time scale of the stabilizing fields due to relaxation
is indicated by arrows with a broken line. In each example, the physical effects providing
the coupling to the stabilizing cycle is given. The symbols Fgy or AT indicate that the
corresponding effect of one field onto the next is proportional to the external driving.
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