Chapter 4

Basic state

In contrast to the SM, the basic state of planar EHC in the WEM description is in
general not trivial, i.e. 0 =1, ¢ =0, n = (1,0,0) and v = 0 is not a solution of the
WEM equations. For blocking electrodes this is obvious because charge conservation
together with finite conductivity leads to an accumulation of charges near the elec-
trodes. The only exception are plates having conductive properties as though the
NLC would extend behind the electrodes to infinity in the z direction. Actually, this
kind of "ohmic” BC is assumed in the SM. Any other BC lead to boundary layers
(BL) with the general form

o=o09(z,1) =14 b0o(z,1), ¢ =0b¢po(z,t), mn=(1,0,0), v=0. (4.1)

Global properties of the BL. can be measured. The component of the dipole momen-
tum per area that is in phase with the external voltage leads for low frequencies to
a deviation of the capacitance from its dielectric value; the component with a phase
lag of 7/2 leads to a contribution to the AC conductivity for low frequencies. Of
course, the DC conductivity equals zero for blocking BC.

In Chapter 4.1 I formulate the problem and discuss general properties of the basic
state. In the Chapters 4.2 and 4.3 the BLs arising from blocking BC are discussed
in the limits of slow and fast recombination. The latter case has been investigated
extensively in different contexts in the literature and I will show how the models used
there are related to special cases of the WEM. Chapter 4.4 gives the current response
of the NLC cell in the basic state for blocking BC in form of analytic approximations
for the low-frequency behaviour of the capacitance and the conductivity. Fits to the
experiments give a thickness of about 1 pm consistent with the values calculated
with the WEM. It is concluded, that, at least in the 152 experiments, the BLs are

not relevant for EHC. This means that, in a good approximation, the subsequent
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34 Basic state

linearization of the WEM in Chapter 5 can be carried out with respect to the trivial
basic state. Thus the main part of the material contained in Chapter 5 is independent
of the presentation in this chapter, and readers not interested in the problem of the
basic state can continue with Chapter 5. The linear stability analysis starting from

the nontrivial basic state is formulated in Appendix A.2.

4.1 Boundary layers

The investigations in this chapter are based on the general scaled WEM equations
(3.18) and (3.19), without the approximations made in Chapter 3.3.1. The Egs.
(3.27) - (3.30) resulting from these approximations are the basis for the Chapters 5
and 6.

Inserting the ansatz (4.1) for the nontrivial basic state into the equations (3.18)
and (3.19) results in

d
Platpo = —82 (an'o) + D@ZQ (281[)0 -+ fO) 5 (42)
Plﬁt(ao - O.’dl/)o) = —C!25182(E0p0) + Dslaf (20'0 - C!dlpo)
7P
_ Tl [a-g —1—adips — a231p3} ) (4.3)

In contrast to the linearization in Chapter 5, the director relaxation plays no role,
and the charge relaxation time rather than the geometric mean ,/7,7; and the sum
of the mobilities rather than their geometric mean is relevant for the basic state.
Furthermore, the diffusion length in the basic state is directly related to Ap. So |
introduced as new mobility parameter the ratio of the charge relaxation time to the
transition time for the mobility sum g under the voltage V.9, and as new diffusion
parameter the scaled Debye length [92],

_ Ta_a_ /L‘/Co’/"qﬂ'Q _ Pir?
a = 7_1£7r =5 = \/ . a, (4.4)
7T)\D 2 D
D = 2(—) =—. 4.5
( d > 281 ( )

Assuming v = 1, « varies from 0.016 for 7" = 30°C to 0.0032 for 7" = 60°C and
D =~ 0.0la in the 152 experiments [31, 42]. Equations (4.2) and (4.3) are a set of
partial differential equations with inhomogeneous BC for py = —0%¢¢ and o0o. With

respect to the z derivatives, they are of forth order in ¢g and of second order in oy.

The necessary six BC are ¢o(z = £7/2,¢) = 0, and the four BCs (3.24) and (3.25).
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The nonlinearities arise from the recombination terms in the bracket and from the
7 drift advection terms” 0,(Fopo) and 0,(Fooo).

A first estimate of the (scaled) BL thickness, valid for any recombination rates,
is set by the amplitude \,,;, of the carrier-drift oscillations under the AC field, *.

avR

phys
TWy — Tq

(4.6)

/\mig =

Since the charge-density parts of the BL relax while they migrate, the effective
thickness of the p-BL caused by the drift effects cannot exceed the distance A, = a/R

travelled in one charge relaxation time.

4.2 Estimates for slow recombination

Assuming Tyec >> T,, the carrier-density mode cannot follow the oscillations of the
external field, so 0¢(z) is assumed to be approximately constant in time. The blocking
BC induce oscillating charges, so pg(z,t) oscillates with the external field. We are
only interested whether there are boundary layers that are much thicker than the
p-BL whose thickness is bounded by An.;,, Eq. (4.6). Outside the p-BL, the Eqs.
(4.2) and (4.3) can be linearized. The ansatz

po = (pg coswot + pg sinwot)e FE=7/2) .
bog = ale kE=7/2) (4.7)

leads to three eigenvalues k,, corresponding to three characteristic lengths Agp,, =
1/ky. There are two modes dominated by p with Ay, of the order of Ap, and much
less than Ap, respectively. The third mode dominated by ¢ has the decay length

249D
ABLo = \/—Sl(RCf +2D) (4.8)
T'Pl

For a zero electric field, the three modes are decoupled and Apr, results from the
interplay of diffusion and recombination relaxation of the o field. For 7 = 0.05
relevant for an experiment using 152 (see Chapter 5.5), the thickness of the o-BL
would be nearly 40% of the cell thickness, but this mode is not excited for blocking
BC. Nevertheless, this problem should be investigated numerically.

Tn this estimate, 24/2/7 is set equal to one.
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4.3 Limit of fast recombination

If ree << wo_l and 7o << 74, the carriers are in local equilibrium with respect to the
dissociation-recombination reaction so that n*n~ = nZ2. This corresponds to 7 — oo,
i.e., the bracket in Eq. (4.3) must become zero. This is automatically fulfilled by

expressing the carrier densities in terms of the ”diffusion potential” wu, defined by

n* = nget®, or
2sinh u
. = 4.9
polw) = (19)
eu +,}/e—u
' = —. 4.10
wo(u) = S (1.10)

The right-hand side of (4.2) becomes —0,.Jy where the current is given by

D Vi
Jo(u) = oo(u) [EO - —azu] = oo(u) [EO - —Tazu] : (4.11)
a Vo
and Eq. (4.2) itself can be written as
P10 sinhu = —o(u) i w + sinhu — B@zu . (4.12)
2 of(u) 2

The form of the current is obvious from the derivation of the WEM. In the fast-
recombination limit, the thermodynamic forces F*, Eqs. (3.6), are given by
F* = :FeV(¢;0 + Vru), so Jo = pT0,FF — p 0, F7 = 0,9.(Fy — Vrd,u), which is
just Eq. (4.11) in physical units.

The electric field in the Eqs. (4.11) and (4.12) is given by

z

Eo(z,1) = Ey(t) + / dzpo(u) (4.13)
—7/2

where the field E,(t) = Eo(z = —7/2) is determined by the condition Jo(u) = 0 at

z = —7 /2 with Jy from Eq. (4.11). After some transformations using the condition

of overall neutrality Fo(z = —7/2) = Eo(z = ©/2), the result is

1
Ey(t) = —(p(t)—\/iZRcoswot>, (4.14)
T
/2 /2 inh
p(t) = / dzzp0:2/ dzzm (4.15)
/2 /2 «Q

p(t) has the physical meaning of a dipole momentum per area.
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Equation (4.12) with (4.11), (4.9) and (4.10) represents a partial integro-differential
equation for the field u(z,t). The ”integro” part comes from the electric field, Eq.
(4.13) and the BC (4.14). It was solved numerically with a finite-difference method in
real space. The z derivatives are represented as centered differences of second order
and the integral parts are calculated using the trapezoid rule. For the time steps, an
implicit second-order Crank-Nicholson method was applied for all local terms and
an Euler step for the nonlocal parts. For the numerical calculations [93], space was
scaled by Ap, time by 7, and the voltage by Vr, and then the equations (4.12) and
(4.14) take the compact form (v’ = d,u)

Orsinhu = —og(u)[sinhu — u"] + [u’ —up — / dz sinh u] %u’, (4.16)
0

U

)\ d/?)\D 17 2
u = 2D / dzzsinh u — Vv2 cosu)ghysfrqt . (4.17)
d —d/2)p Vr

Note that in this scaling the integro-PDE itself contains only the ratio v while the BC
d vV phys

(4.17) contains the three system parameters of the basic state, 3o Vo and wj T,
The BCs are implemented by calculating from (4.17) two "virtual” points just one
grid unit outside of either electrode and using these points in the z derivatives of the
next step. As initial conditions, all fields were set equal to zero and several external
periods (typically 10 corresponding to 10* time steps) were simulated before the
actual period which is plotted to obtain approximately steady-state conditions.

In the following, I present results for v = 1. In this case, further simplifications
are possible (see below), which are not essential for the numerical solution, but can
be used to make contact with previous work.

Figure 4.1 (a) shows the field u(z,¢) and Figure 4.1 (b) the electric field Fq(z,t)
in the WEM scaling for the parameters d/\p = 26, V/Vy = 143, and wghysfrq =
0.27. Figure 4.2 shows u(z,t), Fo(z,t), and the local current density Io(z,t), for
a higher frequency of the AC voltage. In physical units, the voltage is half of the
threshold voltage in the MBBA experiments [39, 40]. The thickness of 13um in these
experiments corresponds to Ap = 0.5 um or, with the formula for Ap in Table 3.2
and for o, = 107%(Qm)~", to g = 3 x 107?m?/(Vs).

Since in a rather large part of the bulk region the fields are nearly those of
the trivial SM state, the electric field in units of Vp/Ap, rather than the voltage,
determines the dynamics of the BLs. The spatio-temporal behaviour of the scaled
fields in the Figs. 4.1, 4.2, and Fig. 4.3 is invariant under a transformation V — /BV/,
Ap — B7'A}, corresponding to u — 3724,

Figure 4.3 illustrates how the blocking BCs lead to a charge accumulation. In
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Figure 4.1 (a) Diffusion potential u = In(n*/n~) and (b) local electric field, E = Fyz
of the WEM basic state in the fast-recombination limit for blocking electrodes and for an
applied voltage corresponding to half of the threshold voltage. Assumed is an Debye length
of Ap = 0.5 ym .
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Figure 4.2 (a) Diffusion potential, (b) local electric field, and (c) local current for the
MBBA cell of Fig. 4.1 above, but for a higher external frequency of wyr, = 7.
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contrast to strongly injecting electrodes which can lead to the Felici instability [82],
the blocking BC lead to a volume force which points always towards the electrodes
and thus acts stabilizing.

Note that, in principle, Equation (4.12) can be written as a PDE of third-order
with respect to the z derivatives by solving for Ejy, differentiating both sides, and

setting 0,Fy = po = 2sinh u/a. This form is, however, numerically less stable.

Special cases

4+, — 2

For equal mobilities (y = 1), the condition n*n~ = n can be written as o =

(1+ ﬁg)l/Q and (4.2) becomes
OéEoﬁo
24/ 1 + ,5(2)

The three terms on the right-hand side can be interpreted as relaxation of the charges

. . B . D,
P10ipo = —por/ 1 + p§ — 0:po + 5322,00. (4.18)

with the linear relaxation rate enhanced by a factor of (1 + p2)'/2, while the carriers
drift with the velocity u* Ey of either species times a factor o /(14 p2)'/2, and diffuse
with a constant rate. The slowing down of the effective velocity for decreasing g3 is
illustrated by the "charge wave” in Fig. 4.2 for t=0...7 near the left electrode and in
Figure 4.3, where the charge wave moves quickly to the right if g3 is large (Figures
4.3a - 4.3c) and slows down and eventually relaxes (Figures 4.3d and 4.3e).

In the stationary case (DC driving), charge conservation implies a constant cur-
rent and Eq. (4.12) reduces to the condition that the bracket be zero. Neglecting
diffusivities, this condition can be writen as

' —ye dz
(e ) = wa e )
The integration gives the rather lengthy Eq. (14) in Ref. [81]. In the unipolar limit
this gives the well-known basic state py = (Jo/(2a)'/? of the Felici instability [82].
At last, the linearization of (4.12) in the stationary limit (Ey = v/R/x) gives

two decay length scales associated with the combined effects of diffusion, drift and

relaxation.

4.4 Low-frequency behaviour of the resistance

and the capacitance

Throughout this section I use unscaled (physical) units. The general current response

for any BC is the sum of the conductivity current and the displacement current. For
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Figure 4.3 Snapshots of the WEM basic state of Fig. 4.1 for five times covering a half
period. Shown is the space charge pg = sinh u (solid), the local field Ey (dashed), and the

local current Iy (point-dashed).
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a NLC cell with an area A in the x and y directions, one obtains
](t) =A |:_]z + 81560 (gE)Z:| s (420)

where 3 and OieocF are the conductivity and displacement currents. With the help

of charge conservation, Eq. (4.20) can be transformed into
- ot
I(t)=A |:]BO + 0, (6063jEj + #)] , (4.21)

where T denotes the average of the quantity = over the cell volume and jg. is the
horizontally averaged current density through the boundaries (5. = 0 for blocking
BC). Overall neutrality implies jg.(2 = —d/2) = jgo(z = +d/2).

Below threshold, the averaged displacement current eodses; F; = eoe 0:V (t)/d is
strictly in phase with the time derivative of the voltage and leads to the dielectric ca-
pacitance. For blocking BC, all nontrivial parts of the resistance and the capacitance

are related to p(t).

4.4.1 AC Resistance and capacitance

The AC resistance R ? and capacitance C' are defined by the Fourier-transformed

current response [(w),

% = Rep ) (4.22)
C = élm% (4.23)
With Eq. (4.21), one arrives at
I
C = Cuu+t % [Re (5%) + élm (”BVC%)‘Z)] , (4.25)

where Cyep = Aegey /d.

’In this section, R is not the control parameter
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4.4.2 Analytic approximations for blocking boundaries

The considerations in the previous sections show, that in a good approximation
Mg, << 1 for the relevant modes. In addition, I assume for the BLs the functional
form

po = pl(t)e_(z_d/Q)//\BL + pr(t)e_(d/Q_Z)/)‘BL’ P = —pr. (4.26)

(in view of, e.g., Figure 4.1, this is a rather crude approximation). Charge conser-
vation leads to a dynamical equation for p; which can be expressed as one for the

dipole moment per area,
2ABrL

Tyd
Substituting this into (4.24) and (4.25) yields the result

R = R, (1 + (w;\;q)Q) : (4.28)

)\/
= 14 —2 ) 1.2
¢ = (14 i) e

where R, = d/(Ao ) is the high-frequency resistance and X' = 2Agy,/d is the fraction

Ohp = — p+ V(t)o,. (4.27)

of the cell volume occupied by the Bls.

Fitting these relations to the capacitance and resistivity measurements of Dennin
[31] gives an effective thickness of the charge BL of about 0.9 ym . In the experi-
ments, the external frequency always satisfies wghysrq >> M, so Eq. (4.29) predicts
C — Cpea ~ )\’/(wghysrq)Q. The measured low-frequency behaviour, however, fits
better to a (wghysrq)_l law. The discrepancy is possibly a result of the the crude
approximation (4.26).
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