Chapter 3

The Weak Electrolyte Model

I know that I know nearly nothing, and hardly this.
K. R. Popper

Many features of EHC in the conductive range of low frequencies are quantita-
tively described by the SM, in particular the threshold voltage as function of the
external frequency, and the existence and angle of oblique rolls. Nevertheless, even
qualitative features remain unexplained. Most notable are travelling rolls which have
been observed as early as 1978 [38]. Later on, they were found in a broad parame-
ter range in different liquid crystals (MBBA, Phase 5 and 152) by different groups
[42, 39, 40, 41, 30], and seem to be generic for relatively thin and clean cells. Despite

this, they have withstood a theoretical understanding until recently.

3.1 Physical assumptions

A theory of travelling rolls in EHC must explain the following facts.

o The travelling rolls are really produced by a Hopf bifurcation that breaks spon-
taneously the reflection symmetry. This is shown by spatiotemporal correla-
tions of subcritical director fluctuations which are left-right symmetric [39].
This is confirmed by experiments where the control parameter (rms voltage) is
modulated in time and, for a modulation with the double Hopf frequency, pa-
rametric resonance leads to standing waves as predicted by theory for a Hopf
bifurcation [40]. This means that the travelling rolls really originate from a
Hopf bifurcation to degenerate right and left travelling rolls. Drift effects due
to broken left-right symmetry (e.g., nonideal planar boundary conditions with
a pretilt [52, 76]) are excluded.
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18 WEM

o Travelling rolls are only found in thin cells, e.g., in MBBA in cells with d =
13pm [39], but not in cells with d > 20um [41, 43], and in 152 for d = 28um,
but not for d = 5Tum [30, 42].

e For a fixed cell thickness, travelling rolls are observed for conductivities below a
certain threshold [30]. From experiments, it was suggested [31], that deviations
from the SM scale with (¢, d*)™" and, in particular, that for a given material
the codimension-two curve separating stationary from travelling rolls is given

by o, d* = const.

e For a stongly negative dielectric anisotropy (MBBA with ¢, = —0.53 or Phase
5 with ¢, of the order of —0.2) one observes travelling rolls only in a certain
frequency range wWo min < Wo < Weutofs (€.8. between 350 and 420 Hz in [40]),
or, the Hopf frequency becomes very low for low frequencies [41, 78]. For
152 at low temperatures (slightly negative ¢,) there are travelling rolls with a
significantly nonzero Hopf frequency for all frequencies and the Hopf frequency
increases with the external frequency. At high temperatures (¢, essentially
zero) the Hopf curve of 152 is essentially flat [30, 42].

e Furthermore, there is an excellent quantitative agreement between the SM and
experiments for thermal convection in NLCs [23, 79, 24], so any new model

must reduce to the SM for zero electric fields, and for large values of o, and

d?.

In the SM, the static and dynamic electric properties of the NLC are described by
D = ¢F and J = oF, respectively. Obviously, a new model must generalize either
of these two relations.

The static relation has been generalized to include flexoelectric effects (see Chap-
ter 2.2), D = ¢E + Piepo [49, 65]. The rationale was that the flexoelectric terms
break the combined symmetry z — —z, t — t + 7 /wy and that the resulting coup-
ling of two linear modes, namely the conductive TA and dielectric IIB modes (see
Chapter 5.2) may lead to oscillations at threshold [52]. However, this can be the case
only for external frequencies where both modes get unstable nearly simultaneously
(crossover), i.e. only near the cutoff frequency. In addition, there are other problems
with the flexoeffect that are described in Chapter 2.2. Anyway, evaluating the SM
including the flexoeffect has not led to travelling rolls.

A generalization of J = ¢ F, i.e., a non-ohmic conductivity, was suggested already
in the Refs. [48, 52] and will be the basis of the development of the WEM. The intrin-
sic conductivity of thermotropic NLCs is extremely low (for I52 less than 1072 (Qm )™
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[31]; To obtain a sufficient and well-controlled conductivity, one adds often an io-
nizable dopant to the NLC. For MBBA with the dopant Tetrabutyl-Ammonium
Tetraphenyl-Boride (TBATPB), the conductivity increases with the square root of
the TBATPB concentration [80]; with a molar concentration of 107> moles per liter
one obtains a conductivity of 1.5 x 1077(2m)~'. For 152, it proved to be very difficult
to find a dopant providing enough conductivity for EHC, probably because 152 con-
sists of nonpolar molecules, in contrast to MBBA. At last (after 17 tries with other
dopants) a concentration of 2% (!) Iodine (I3) was successful in the experiments of
Mike Dennin [31].

For MBBA with the dopant TBATPB, the measured dependence of the equi-
librium conductivity from the square root of the TBATPB concentration can be
naturally explained by a simple dissociation-recombination reaction. Ref [80] sug-

gests the reaction
(C4Hg)g N(CeH;5)4B = (C4Hg)g N* 4 (CeHy)4B,
which has the generic form [80]
AB= A% +B".

In equilibrium, the product of the number densities nt and n~ of the ions A" and
B~ is proportional to the density nap of the undissociated molecules, ntn~/ns g =
const. := K (mass-action law). The conductivity is caused by the drift of the dis-
sociated ions, is proportional to the sum of nt, n~, weighted with the mobilities.
With typical values for the mobilities (see Table 3.1) one finds that only a small
fraction of the impurities is dissociated into ionic charge carriers (weak-electrolyte
limit) and one obtains from the mass-action law the observed square-root behaviour.
In the I3 doped 152, the molecules form a charge-transfer complex and then undergo
a dissociation-recombination reaction [31]. Although this is a multistep process, the
net effect should be described by the above simple binary reaction.

In any case, the current should be described as in the SM (Ohm’s law with
anisotropic conductivities) for homogeneous stationary systems, or, approximatively,
for thick cells. This motivates following assumptions for the WEM.

e The electric current is caused by two species of ionic charge carriers AT and
B~ with charges £e ' and number densities n* and n~. The electric current

JE of each species is caused by advection with the fluid velocity, migration

!Charges of ne can be taken care of by renormalizing the mobility by a factor of 1/n.
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(drift) by electric fields E, and diffusion due to carrier-density gradients [81],

J=J " +J = e(n+ —n)Jv+te <ﬁ+n+ —I—ﬁ_n_> E
— e (Q"'Vn"' - Q_Vn_) ) (3.1)

The charge carriers originate from dissociation of impurity ions and can be
described by the net reaction AB = AT 4+ B~ with the dissociation rate
Ngiss= kqnap and the recombination rate n...= k,n*tn~. In addition, over-

all neutrality, [d®r(nt —n~) =0, is assumed.

The mobilities (and diffusivities) are uniaxial tensors whose principal values ;LT
and ,uﬁ (Df and Dﬁ) do not depend on E, nt or n™. I assume equal relative
anisotropies [80, 28], which must be given by the measured relative anisotropy

of the conductivities to be consistent with the SM limit,

o : o’ o
pih = HIp, ey = Eop with = 6y + —gning. (3.2)
1

The number density of dissociated ions is much lower than the density of the

remaining undissociated impurities (weak-electrolyte limit),
nag >>nt,n”. (3.3)

Introducing the dissociation constant K = kq/k,, the equilibrium charge carrier
density of the neutral NLC, ng := n}, = n_, = \/n’jz K, the total concentration
of the dopant, ¢ = nag + (n™ +n7)/2 (a conserved quantity), and the degree
of ionization in equilibrium, 3. = ng/c [28], we have in equilibrium (Fy = 0),

but not restricted to weak electrolytes

K c
Be=— /1 +4—=—-1]. 3.4
’ 20( + K ) (3.4)

The weak-electrolyte limit is given by 3. ~ \/K/c << 1,i.e. K << ¢ which is
well satisfied for 152, see Table 3.1. The generalized condition (3.3) for E # 0
requires knowledge of the solutions of the WEM equations, i.e. can be verified

only a posteriori.
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3.2 Formulation of the WEM

3.2.1 Dynamical equations for the charge- carrier densities

The hydrodynamic part of the equations for the carrier densities (without dissocia-
tion and recombination) can be formulated in the framework of generalized hydro-

dynamics. The electric part gZ)dp of the SM energy density (2.10) becomes
de = (Z)e(dn+ —dn™ )+ kgTd(ntInn™ +n" Inn™), (3.5)

where the second term equals T' times the additional entropy from the two (non-
interacting) carrier densities. Without dissociation and recombination, the fields n*
are true hydrodynamic variables obeying the continuity eqations d;n* + V - (ntv +

J,+) =0, where the currents are linear combinations of the thermodynamic forces,

Oe
on*

Ff=_V ( ) = +eE — kgTVInn*. (3.6)

Cross couplings between, e.g., J,+ and F'~ are not forbidden, but it seems reasonable

to neglect them, putting J,+ = M*F*. The Onsager matrices M* are determined

by the condition that the ohmic SM conductivity should be recovered in the homo-
geneous limit and by the assumption of constant mobilities (J,+ o< nt). This leads
to ﬂi = %ﬁini or
- ksT
Jx = +pt (niE — LVT#) (3.7)
= e
Comparison of (3.7) with (3.1) gives a relation of the diffusivities with the mobilities,

the anisotropic form of the Einstein law [28],

kT
Qi = VTﬂi7 Vr = B

== €

~ 26mV, (3.8)

where Vr is the thermal voltage. The (non-hydrodynamic) dissociation and recom-
bination parts are given in a homogeneous (stirred) system by the usual kinetic
equations ;n* = kynap — k,ntn~. The weak-electrolyte assumption implies that
nap ~ nyg = const, or kgnap — k,ntn” & k. (ng —ntn7).

Combining the hydrodynamic and the non-hydrodynamic parts and substituting
Eq. (3.7) for the currents give the dynamical equations for the carrier densities,

ont + V. |lont + pf;t’(:l:E — VTV)ni = k,(nf —ntn7). (3.9)

Note that, using V-v = 0, the left-hand side of (3.9) can be written in the "advective”
form
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(0r + vE - V)ni —I—,uf (:i:niV(ﬁ’E) - VT(Vni)(VH’D where v* = v + ,ufﬁ’(:i:E -
VrV) are the total velocities of the carriers. B B

In view of coupling Eqs.(3.9) to the director and momentum-balance equations
of the SM, it is convenient to write the equation as a continuity equation for the
charge density p(r,t) = e(n™ —n~) and a balance equation for the local conductivity

Jl(rat) = e(,uin+ + Mln_>a

dp + V- {pv + E’EO‘J_ — VTE/V (o) + Zyslp)} =0, (3.10)
oo, + V. {O'J_’U + Mg’E(dlaL + psip) — MVTﬁ/V (s201 + dipsip)
— k n 0_6q 1_ (O-J——I_//’J__IO)(O-J—_MIP) (3 11)
o (o ’ '

where we introduced the effective mobility u = 1 +u7, the equilibrium conductivity
o7 = peng and the mobility ratio v = u7/uT together with d; = (1 —~)/(1 + v),
s1 = v/(1 +7)% and sy = (1 ++?)/(1 + v)?. Note that the terms o< sy, s2(cx dy)
are (anti-) symmetric with respect to a change n* < n~ corresponding to v — 1/7.

/51 1s the ratio of the geometric mean to the sum of the mobilities.

3.2.2 Boundary conditions

In the structureless state with no variations in x and y, we have p = ¢,0,F,, and
Egs. (3.10) and (3.11) represent, with respect to the z derivatives, a third-order
equation for K, and a second-order equation for ;. Thus we need at the confining
plates five BCs for the electrical variables in addition to the usual fully-rigid planar
SM-BCs n = (1,0,0) and v = 0 (2 = +d/2). The integral condition

/2
/ dz B, = V(1) (3.12)
—d/2

is always valid. the remaining four electrical BC are relations between current,
electric field and density for each species at the electrodes which can depend in

a complicated way on electrochemical processes and may be parametrised e.g., for

z=4d/2 as

‘]Zi = O-:flrfaceEZ - D;waace(neiz‘t - ni)7 (313)
where J* = eJ (J- = —ed) are the electric currents carried by the positive

(negative) carriers. Some special cases are
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e Strongly injecting electrodes where ogyface 1s very large at one or at both elec-
trodes leading to £, = 0 ("space-charge limiting conditions”). In the isotropic-
unipolar case, such BCs are adopted, e.g., in the Refs. [81, 82].

. . . +
o Electrodes absorbing outflowing carriers, o .

= eptn* for B-¢ > 0, and
Osurface = 0 for E - é < 0 (é is the outwards-pointing normal vector). This kind

of electrodes is used for electrodyalitic purification [83].

e The BCs of the SM. For zero diffusivities, the five electric BC lead to an

overdetermined system. This fixes the BC to the "ohmic BC” ¢ = eptn®

surface

orJ, =0 F,.

e Blocking electrodes. No transfer of any charge through the electrodes [84, 85,
86],

JHz=+d/2) = J (2 = £d/2) = 0. (3.14)

These last BCs do not involve unknown electrochemical processes and will be as-
sumed in the rest of this paper. They are also relevant for the 152 experiments
(insulating ST O - layer at the electrodes [30]) and it is known that, for AC driving,
blocking electrodes do not influence EHC [87]. These BC imply that the total charge
fce” &rp := [dz dyQ is a conserved quantity. Usually, overall neutrality (Q = 0) is
assumed, but the electrodes may contain as well permanently adsorbed charges [86].
This can be incorporated into the WEM by setting

E,(d)2) — E,(—d/2) = — Qs : (3.15)

€o€ L

where ()4 is the average adsorbed total charge per area and F, is the field just inside
the layers. Remarkably, Eq. (3.15) is the same whether the charges are adsorbed
at the top or bottom plates or on both, see Fig. 3.1. Like the flexoeffect, adsorbed
charges break the z symmetry of the system, but leave the combined symmetry
z — —z, t = t + 7/wg intact. Adsorbed charge layers increase the Fre’edericksz
threshold in a simple model [86]. Their effect on EHC has not been investigated.

3.2.3 Material parameters related to conductivity

In addition to the SM material parameters (see e.g. Ref. [48] for MBBA), the Eqs.
(3.10) and (3.11) contain the WEM parameters uT, 47, and k,ng. As will be shown

later, only the products uTu] and k.ng are relevant, in most cases.
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Table 3.1: Material parameters related to conduction

parameter material value and source
total mobility p ## MBBA *+ | 3.71 [80];
MBBA 0.18 [83]; 1..10 [87]; 10 [81]; 1 [28]
5CB 0.6 [84]; 2.5 [86]
theory 11 (Stokes friction) [80]
for MBBA | 0.2 (dielectric friction) [87]
geometric mean /T 7 | 152 0.40 ... 0.47 (Hopf frequency) [42]
assumed MBBA# 1 [80]
mobility ratio ~y 5CB >> 1 [84]
mobility anisotropy fj—i MBBA 0.33 [80]; 0.5 [88]
dissociation MBBA# 3.4 x 10*'m™2 [80]
constant K = :—f MBBA T | (2..4) x 102°m~2 [28]
recombination- MBBA f 1.5 x 107%"m3s~! [83]
rate dielectric
constant k, liquids 107 m?s~ [81]
carrier lifetime MBBA f 2.7 x 10* s [83]
Tree = (2k,m0) 7" MBBA 10~3s [81]
5CB 0.05 s [86]
equilibrium MBBA 6 x 10*°m—3 [28]
density ng 5CB 102°m=2 [84]; 8 x 10*°m™2 [85]
degree of ionization MBBA = # | 0.001
B.= 1, Eq. (3.4) 152 + 0.2
diffusion constant D 5CB 4.5 x 1073 m?s™! [84]
## In units of 1071%m?/(Vs); # dopant TBATPB;
tt dopants TBAP and TBAB; *t*+ does not depend on the TBATPB
concentration;

T electrodialysed to o = 5 x 1079(dm)~!, 50 °C(3K above the clearing point);
** dopant 2% Iy; *For o =1077(Qm)™!, pp = 3.71 x 1071%m?/(Vs);
T T=40C, oy = 0.49 x 1073(Qm)~*
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Figure 3.1  Effects of adsorbed surface
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The dissociation constant K and the total mobility ¢ = p1 + 7 (and thus ng)
were measured in MBBA doped with TBATPB [80] by fitting the experimentally

obtained conductivity vs. concentration curve to the expression obtained from (3.4),

q

K
d\'(c) = euno = euf.c = e;; (1 [1+ 4% - 1> . (3.16)

The quantities p, kpnap ~ kyc and k, were determined by measuring the stationary

current and the current response to various voltage signals in electrodialytic cells
with charge-absorbing BC [83]. Another group used the current response in cells
with blocking BC to measure p, ng and indirectly the diffusion constant D via the
thickness of the diffusive boundary layers [84, 85, 86] which are assumed to decay
exponentially with the Debye length Ap, see Table 3.2. The resulting diffusivity
is smaller by a factor of three than that obtained with the Einstein relation. As
discussed in Chapter 4, the thickness of the diffusive boundary layers can be obtained
also by measuring the capacitance as a function of the external frequency [31].

There exist also theoretical estimates for the mobility. In the simplest case one
assumes that the dissipation leading to a finite mobility is caused by Stokes’s friction
of a sphere with the effective ion radius (of the order of 5 A) For NLCs, the resulting
mobilities are two to three orders of magnitude too high [80]. The correct order of
magnitude is obtained [87] by assuming additional dissipation from the lag of the
polarization cloud in the surrounding solvent [89]. This theory of "dielectric friction”,
however, predicts an isotropic mobility depending on microscopic parameters like the
ion radius and the Debye relaxation time (~ 107¢ s in NLCs [29]) which causes the
lag, It is applicable only to polar solvents (MBBA, not 152). Finally, the WEM
relates the geometric mean /ut u7 to the Hopf frequency, see Chapter 5.

Table 3.1 contains a summary of relevant measurements. There seem to be no
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Table 3.2: Intrinsic scales of the WEM

quantity definition typical value*
threshold voltage Vo= \/% 263V
thermal voltage Vi = % 26 mV
diffusion time Taiff = Dg—iw R %‘37} 342 s
recombination time Tree = (2k,m0) 7" 1073...2 x 10* s
carrier transition time T = jfco 3.39 s
director relaxation time Tqg = Igllld; 0.561 s
charge relaxation time T, = % 5.35 x 1073 s
momentum diffusion time Tyise = di% 6 x 1076 s
diffusion layer Ap = 1/,565—2? =, /VT;;# 0.1 pm
*NLC 152 for d = 28 pum at T = 40°C (see Appendix A.1)

measurements of v although this seems to be possible by the current-response expe-

riments.

3.2.4 Intrinsic times and lengths, scaling

In the Table 3.2 T show the various intrinsic time, length and voltage scales of the
WEM subsystems. One sees that the full WEM has the potential for rich behaviour.
Note that, by virtue of the Einstein law, the diffusion scales are not connected with
new material parameters. It is useful to scale lengths, times, the electric potential
and the total charge concentration in such a way that they become of the order of
unity for EHC. The chosen scaling is given in Table 3.3. Many properties of the
SM do not depend on the absolute values of the material parameters (in contrast to
the WEM), so the material constants will be scaled as well. Dependent quantities
are scaled accordingly, e.g., E in units of Vn/d and p in units of Vm?epey /d?.
Furthermore, it is sometimes useful to express the local conductivity in terms of the

deviation from its equilibrium value,

O'J_(’l",t)

eq
g,

bo(r,t) := — 1. (3.17)
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Table 3.3: Scaling

quantity scaling unit typical value *
lengths d/= (10...100pm) /=

. d? d 2
time ry = L, 0.166 5 (52
voltage Vo= \/m = \/m 1.19V

01 Tq €E0EL

conductivities o't = peng 1072...1077(Om) !
orientational elasticities Ky 6.66 x 10712N
dielectric constants €0€ L 4.65 x 107" As/Vm
viscosities = Q3 — Qs 0.109 kg (m s)~*

* parameter set MBBA T (Appendix A.1)

Unless explicitely stated otherwise, all variables with the exception of the scaling
units €;,07% 71, and Ky; are understood as scaled variables in the rest of this thesis.

The resulting scaled WEM equations, which replace the SM equations (2.24)-
(2.26), are an important building block of this work and the basis for the investiga-
tions in the next three chapters. They read

P0i+v-V)p = —V-(4Eo)+ DVy'V (,0 + %) (3.18)

(O +v-V)(o—dp) = —a’*z"V-(4'Ep)+ %ng <a — ‘;—/’) (3.19)
_ g {(a +1)(0 1) = dpo — Plyr%ﬂp?}

(O +v-V)n = wxn+6 (An—h) (3.20)

T;:C(at +v- Vo, = —dp— (TS + 7)) + 7°pFi, (3.21)

The system parameters R, wg, P;, & and 7 are given in Table 3.4,

d = (Pl/’y)l/Qﬂ'(l — v)a& is a mobility-difference parameter and D = 4s1(7Ap/d)?
the scaled diffusion constant. ? The constitutive equations for p, h and Ti‘]’-isc are,
respectively, given by V - (¢E), Eq. (2.27), and Eq. (2.28) with the scaled material

In contrast to the SM Eq. (2.24), the diffusion currents have been kept in Egs. (3.18) and
(3.19). The approximation of zero diffusivities is usually assumed in the bulk. This may not be
justified for very thin cells where the thicknes of the boundary layers can become of the same order
as d (Chapter 4.) Furthermore, in the dielectric regime where the size of the patterns can be << d.
the neglect of the diffusivities becomes questionable even in the bulk.
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parameters and ¢, replaced by 72%¢, in Eq. (2.27). The electric field
E =V2Rcoswptz — V¢ (3.22)

contains the two SM-control parameters. The fully rigid BC for homogeneous ali-

gnment and blocking electrodes are

/2
/ dz E, = V2Rcosuwgt, (3.23)

—7/2
— |E.o— Do _dr ~ 3.
Loty = |Boo = DO | o4 55555 =0, (3.24)
L z=%7/2
o ~2, 2 D 7 /¢ q <
L ! z=+7/2
n(r/2) = (1,0,0), wv(r/2)=0. (3.26)

3.3 Discussion

The physical contents of the new Eq. (3.19) is an excitation of the charge-carrier
mode (¢ mode) by the p mode oc &, diffusion o D x &? and recombination o 7. 3

The WEM equations (3.18) - (3.26) contain much more parameters as other fluid-
dynamical systems. For example, the scaled Boussinesq equations for RBC in simple
fluids depend only on the Rayleigh number and the Prandtl number Tiherm/Tvisc-
The WEM contains two ”Rayleigh-number like” control parameters R and wyg, four
"Prandtl-number like” time-scale ratios of subsystems, Py, &, 7 and 7yis/74, One
ratio of WEM material parameters, v, and a total of eight ratios of SM material
parameters, Ko, K33,¢,,0, and four viscosities.

Fortunately, the dynamics is mainly determined by the first two classes ("system
parameters”), summarized in Table 3.4. The ratio 7yis./7s can always be neglected
(at least in the conductive range), i.e. the velocities can be adiabatically eliminated.
In many cases, also the charge can be adiabatically eliminated, P, = 0.

The full WEM equations (3.18) to (3.21) seem too complex for direct theoretical
investigations. Fortunately, the typical parameters given in the tables in the last
section suggest some simplifications, depending on the particular situation. In the
following, T discuss the approximations of zero diffusivity, of a linear recombination

term and of zero mobility difference parameter d, which are used for the linear

3For a nonzero mobility difference, these effects act on a linear combination of the carrier and
the charge-density fields, but it will be shown that the parts o< d can be neglected in most cases.



Discussion, approximations 29

Table 3.4: System parameters of the WEM

parameter physical process | MBBA# [52##

R = Z;O = % control parameter > 31 > 14
wo Py = wghysrq = ‘”O;% control parameter | 0---2.5 0---4
P = :—Z = % charge relaxation | 0.0095 0.00356

o = @r =4/ “i;‘%};ﬂ ion migration 0.0253 0.024
7= —4 =2k.ngty recombination 0.05* 0.05*

Trec

# Parameter set MBBA 1 with d = 13um,

o =107%(Qm)~! u = 1071%m?/(Vs), v = 1.
## Parameters from Appendix A.1 for 40C; especially

d = 28um, 07" = 0.493 x 107%(Qm)~", p = 0.88 x 1071"m?/(Vs), v = 1.
* Estimates, see Chapter 5.5

and nonlinear calculations in Chapters 4 - 6. The approximations are valid in the
conductive regime, for not too extemely different mobilities and for & << 1, i.e. for
not too thin cells and not too high mobilities. In addition, I discuss the limits where
the SM is recovered and relate various models used in the literature to special cases

of the WEM.

3.3.1 Approximations for low mobilities
in the conductive range

The thickness of the boundary layers, as deduced from the capacitance measurements
[31], is about 1 gm. This is of the same order as the thickness of the boundary
layer estimated from the WEM (see Chapter 4). The value of the diffusivity given
directly in Table 3.1 as well as that obtained indirectly from the mobilities by the
Einstein relation (3.8) lead to Debye lengths even well below 1 pm (Table 3.4). So it
seems reasonable, to neglect the diffusive boundary layers, at least in the conductive
range and for not too thin cells. There are some subtleties connected with the BC.
The equations (3.23) to (3.25) lead to an overdetermined system and impose the BC
E,=0o0r p=0and o =0. This is, of course, plausible since the drift current cannot
be balanced by a diffusive current to satisfy the blocking BC, so its z component
must be zero. This is fulfilled either for £, = 0 or, if there are no carriers at all.

On the other hand, a vanishing diffusivity and a vanishing mobility (leaving o
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constant) means boundary layers of vanishing thickness representing a capacitor of
infinite capacity. For the carriers, this is an infinite sink and leads, as in the SM, to
"free” electric BC 0,F, = 0,0 = 0, no matter what the real BCs are.

There is one caveat connected with ion drift. For zero dissociation and recom-
bination, a DC voltage together with blocking BC would lead to a complete charge
separation (the bulk is free of carriers) after the time Tt/\/ﬁ. For a nonzero disso-
ciation with 7ee/7 << 1, the total density of the (dissociated and non-dissociated)
impurities will decay on a (larger) time scale 7,/(v/Rf.) (electrodialysis). 4 With
an AC voltage these separation effects occur only near the electrodes, within the
distance over which a carrier can migrate in one half-cycle, see Eq. (4.6) below. For
most experiments (especially for those on 152) this distance is comparable to that of

the thickness of the diffusion layer and both boundary effects can be neglected.
If & << 1 (which is fulfilled unless the mobilities are extremely high or the cell

is extremely thin), the recombination term can be treated in linear order, even for
nonlinear calculations. For EHC in the conductive regime, the typical amplitude of
the carrier mode normalized to the charge-density mode s ||o||/||p|| = O(r&*V/R./7)
or O(ra*\/R.|wr) = O(xa//R.), whichever is lower (wy is related to the Hopf
frequency, Chapter 5 below and || * || here denotes the amplitude). This means that
even in the fully nonlinear regime where ||p|| = O(1) all recombination terms in the
bracket of (3.19) are of the order of 4* << 1.

The only mobility-difference term surviving the above approximations is that
on the left-hand side of (3.19). If 7 is sufficiently low, so that the condition for
a Hopf bifurcation is fulfilled (Chapter 5), the relative magnitude d||p||/||6c]| =
O(P,R./¥)"?/(1 — ~)/x) is usually small. In addition, the d term has the z and
time symmetry opposite to that of as the ¢ mode and does not couple back to the
WEM mechanism. With all these approximations the WEM equations (3.18) - (3.20)

become

3.27
3.28
3.29
3.30

P(Oi+v-V)p = =V (ﬁ/EO')
(+v-V)o = —a’x’V - (y'Ep) —réo,
(O +v-V)n = wxn+éL<)\én—h),

o~ o~ o~ o~
— e’ N’ S

p|z::|:7r/2 = 8ZO—|2::E7T/2 = 0.

“In this and further order-of-magnitude estimates of drift distances, I assume, for simplicity, the
upper bound p for the mobility of the faster drifting charge-carrier species.
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3.3.2 The limit of the Standard Model

Equation (3.27) reduces to the charge conservation of the SM for ¢ = 1 or 6o = 0.
Since the magnitude of §o scales with &%/, this is the case for & — 0 while 7 # 0.
In Chapter (3.3.1) it is argued that the boundaries behave effectively as the ohmic
BC of the SM if the boundary layers have a thickness << d. With the results from
Chapter 4 this is fulfilled for & << 1, &/ << 1 and é/P; /(w5 7,) << 1 (W™ is
the external frequency in unscaled physical units).

All above conditions for the SM limit can be summarized as

&—0, F#£0, w0, (3.31)

3.3.3 Relation with models assuming fast recombination

In the limit of fast dissociation and recombination, the carrier mode can be adia-
batically eliminated by setting the bracket of Eq. (3.19) equal to zero. Inserting
the resulting o(p) into (3.18) (where in contrast to (3.27) the diffusivity is retained)
leads to a "bipolar charge conservation” equation for p, which is different from the
SM for & # 0. Coupling this equation to an isotropic momentum balance equation
(Eq. (3.21) with ey — 27 and all other viscosities set equal to zero) gives for a
DC voltage the model investigated by Turnbull [81]. Linear analysis for injecting
(rather than blocking) BC gives a convective DC instability [81], which, of course,
takes place also in isotropic fluids containing carriers.

In the unipolar limit p — oo, nt >>n~ (p —» —oo, nt << n7) corresponding
to strongly injecting electrodes, this model reduces to that considered by Felici and
contains also a DC instability [90, 82].

At last, the fast-recombination limit of the WEM 1is obtained by coupling the
bipolar charge conservation o(p) to the Egs. (3.20) and (3.21) and assuming an AC
voltage and blocking BC. This model leads to an increase for the threshold of EHC,
but again, no Hopf bifurcation [91]. The threshold shift is plausible since, in contrast
to the injecting BC for the DC instabilities [82, 90], the change of the volume force
in the direction of the force is positive, pF.0,(pFE.) > 0 i.e. the volume forces of the

basic state act in the stabilizing direction.
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