Chapter 2

The standard (Helfrich-Carr)

description of electroconvection

The Helfrich-Carr model of electroconvection combines the static [53] and dynamic
[26, 27] macroscopic description of NLCs with the quasi-static Maxwell equations
under the assumption of an ohmic conductivity. Since nearly all past theoretical
investigations are based on this model (see Ref. [50] and the references therein), it
is referred to as the Standard Model (SM).

In this chapter I give the essential steps of the derivation of the SM. The main
purpose is to show the various approximations and to discuss their possible relevance
for a mechanism leading to travelling rolls.

In the first section, I discuss the choice of the macroscopic fields. One has to make
sure that they contain all slow processes involved in the instability mechanism. In
the following section, I give the canonical derivation in the framework of generalized
hydrodynamics [54, 55, 56] (for more details see [57, 58]). Impatient readers may
skip these two sections and go directly to Chapter 2.3 which gives a self-contained
description of the SM in the form used throughout the rest of this work.

2.1 Macroscopic variables

In generalized hydrodynamics, one distinguishes three types of slow fields [55].

e Conserved quantities. They cannot be created or destroyed locally, so their
dynamics is of the form 0, X + V - Jx = 0 where J_ is the current associated
to X. In EHC as in other hydrodynamic systems, the components of the
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8 Standard Model

momentum density ¢; = p,v; ' are such variables. Its currents define the

tensor T;; of the momentum flux, which is equal to the negative stress tensor.

e Broken-symmetry variables. They break a continuous symmetry but are not
conserved, so their dynamical equations are of the form 9;X + Yy = 0 where
Yx is sometimes called a "quasi current” [58]. Since, according to the Noether
theorem, outer symmetries are related to conservation laws, this type of field
can exist only in complex fluids with some inner symmetries. In NLCs without

external fields, the director breaking the local rotational symmetry is such a

field.

o Slowly relaxing variables. In contrast to the first two classes they are not truly
hydrodynamic in that they relax in the homogeneous limit in a finite time.
Nevertheless they cannot be neglected in EHC (and other confined systems), if
their relaxation time is comparable to that of hydrodynamic fields with nonzero
wavenumbers varying at length scales of the order of the distance d between the
two electrodes. The dynamical equation is of the same form as that for broken-
symmetry variables but, in contrast to the former, the static contribution to
the energy density does not vanish in the homogeneous limit. The component

of the director parallel to an electric (or magnetic) field is such a variable.

In both the SM and the WEM, the quasi-static Maxwell equations Vx E = Vx H =
0, dp+V -J =0 are used, where J = pv + J and p =V - D (Poisson equation).
This means that there is only one independent slow electric quantity for which the
charge density p can be taken. ? With the normalization condition n* = 1 and the
further assumption of incompressibility, V-v = 0, the SM contains five independent
fields, namely the charge density p, two director components, and two momentum

densities ¢g; with the equations 3

dp+V - (pv+J) = 0, (2.1)
(O +v-V)n;+Y;, = 0, (2.2)
Ogi + 0;(giv; + Ti;) = 0, (2.3)

In general (e.g. for nonzero magnetic fields), g is not equal to p,v [59]. Within the quasi-static
approximation for the Maxwell equations, we have always g = p,,v.

2Later on, the potential ¢ of the induced field inhomogeneity will be used as independent electric
variable.

3Throughout this work, summation over doubly occurring indices is assumed; the notation
0; = 0/0xz;, n; j = Ojn; will be used freely.
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where the convective currents proportional to v are shown explicitly and p as well

as the (quasi-) currents J,Y and T, are yet to be determined.

One has to watch for other slow processes. The mere existence of a slow field
is, of course, not dangerous. To become relevant for EHC, the slow field must be
excited by the SM variables and must couple back. A possible candidate is the order
parameter S which becomes a slowly relaxing field near the clearing point [58]. It
couples to the other fields via the S dependent relative anisotropies of the material
parameters [25] and was suggested as a possible explanation for travelling waves
[52]. The temperature (or internal energy) is slow as well, which is exploited in
RBC of NLCs [60]. With planar boundary conditions (BC), the director enhances
the buoyancy mechanism of isotropic RBC by a factor of the order of 74/7iperm ~
1000 (!) via heat focussing caused by the anisotropic thermal conductivity [61,
24]. Without an external temperature gradient, temperature inhomogenities are
produced only in nonlinear order by the dissipative heat production R (Chapter 2.2).
A simple order-of-magnitude estimation shows, that this contribution is negligible
even in weakly-nonlinear calcuations [62]. With an external electric field, however,
generalized hydrodynamics allows for a linear mechanism driven by thermoelectric
effects [an electric field drives a thermal current and a temperature gradient drives
an electric current, see Eq. (2.16) below], which may become important for thick

cells.

Even the classic Maxwell equations have some subtleties if applied to polarizable
media [59]. Only rather recently, the treatment of the fields D and B on equal
footing as the other hydrodynamical variables has been carried through [63] leading
in NLCs to new "dissipative” parts of the electromagnetic fields [57], which are
not a priori small. Furthermore, such fields can induce a coupling between, e.g., a
velocity gradient and the electric current, which clearly is relevant for EHC. There
exist, however, no measurements of the material parametes involved, or even an
experimental evidence of these effects; they are just allowed by symmetries. This

concept will not be pursued in this work.

Finally, in this framework, the WEM 1is based on the assumption that the local
conductivity becomes slowly relaxing. It is excited by charge-carrier migration effects
and couples back to the other equations via the change of the conductivity in the

charge conservation.
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2.2 Derivation of the Standard Model

The framework set by Eqations (2.1) to (2.3) is valid for many systems. Now we
specify them to NLCs by determining p and the (quasi) currents J, Y and T. The
functional dependence on the NL.C material parameters is completely determined by

symmetries [55, 58] and its derivation will be sketched in the following,

2.2.1 Statics

The thermodynamical potential suitable for equilibrium at a given temperature and
for a given electric field is the free electric enthalpy G = [d°r{e—Ts— E - D}
where ¢ and s are the densities of the energy and the entropy, respectively.* Near
equilibrium, GG is a quadratic form of the thermodynamic variables n, p,, v, and
E. Furthermore, it is extensive, @ = [d®rg, and the scalar density g is invariant
under rotations. Since m is a symmetry variable without an electric field, the elastic
contribution of G depends only on gradients of n. Respecting the uniaxiality of the
state, the m < —n symmetry and the inversion symmetry in space and time, and

restricting to the lowest-order expansion in the gradients, one obtains

1 . 1 1
G = /dBT' {if)m’vz + §I(Z-jkln,-,jnk7; — §6ijEiEj — e,-jknmEk} (24)
with
Kijkmi,jnk,l = ](11(V . n)2 + [(22[1’1, X (V X n)]2 + [(33[7’1, : (V X n)]Q, (25)
€; = €10ij + €nin;,
€ijk = 6152']%}C + 6352'197%. (27

Comparing Equation (2.4) with the general form of the free electric enthalpy gives
the constitutive equation for D (and thus for p) and defines the "molecular field” h

[25] as the thermodynamic conjugate of n,

oG

Di = —op =il +ejpini = e+ Pl (2.8)
606G Jg dg
én; — On; (57%;') )

The term (2.5) is the orientational-elastic Frank energy [53] due to splay (K1), twist

(K32), and bend (K33) deformations of the director; ¢ is the uniaxial tensor of the

“In the Chapters 5-7, the control parameter is denoted by ¢ as well. A confusion should not

arise.



Derivation of the SM 11

dielectric permittivity, and e;;; describes the flexoelectric effect. The flexoelectric
polarization P'*** Jeads to an additional charge density V- P/'*** in Eq. (2.1)) that
is not a priori small. In fact, the flexoeffect has been investigated rather extensively
as a possible candidate to explain the travelling waves [64, 49, 65]. It cancels out,
however, for AC driving in the "lowest order time expansion” (Chapter 5.2) which
will be considered exclusively in this thesis. In addition, the flexoelectric coefficients
are hard to measure [66].

2.2.2 Dynamics

The suitable potential to derive the dynamics is the energy

dE = /d3r {Tés + (Z)ép + hén + 'Ui(5gz-} = /d3r6, (2.10)

since its natural variables are those of the conservation laws and balance equations
(2.1) - (2.3).

The central relation is the entropy balance

Os+ V- (sv+J,) = %, (2.11)
were the dissipation function R is the local heat production per volume from dissi-
pative processes. With Eq. (2.10), d;s can be substituted by 77 (0 — v - p, v —
h-on — éatp). After eliminating the time derivatives with the energy balance
Oe+ V(ev+ J.) = 0 and with the Eqgs (2.1) - (2.3), we arrive (with the constitutive
equation ¢; = pn,v;) at

R = TV(sv+J,)—V(v+J.)+oV(pv+J)
+ h(’U.VTL + Y) + vz-(pmvj@jvi + 6JT”) (212)

The (quasi-) currents ® on the right-hand side of Eq. (2.12) can be separated into
independent dissipative parts (the superscript D will be used) and reversible parts,
and the latter can be separated into transport parts shown explicitly in (2.12) and
parts existing also in the frame of reference comoving with the local velocity [dashed
in Eq. (2.21) below]. Now I determine the three parts separately.

SHenceforth, I will not distinguish explicitly betwee currents and quasi-currents
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Dissipative parts

The dissipative currents make up the entropy production. Near or in local equili-
brium, the entropy production is a quadratic form of the generalized forces driving
the system out of (global) equilibrium. In equilibrium, the conjugates of conserved
variables are constant and that of symmetry breaking or slowly relaxing variables
are zero, so near local equilibrium, the Onsager forces of the conserved variables p,
i = pmv;, and s are the gradients of the conjugate fields, —V, —0d;v; and —=VT,

and the force of the director is the conjugate h itself. If one writes the forces as
Fo = (Fi, hiy—0v;,—0T), (2.13)
the dissipation function (the entropy production multiplied by 7') takes the form
R=F,M,zFs:=F,J, (2.14)

which defines the Onsager fluxes J,. The matrix M,z has to fulfil the Onsager
relations [67, 68, 69]
M5 = tatgMpg,, (2.15)

where t, = 1 (—1) for forces of variables that are symmetric (antisymmetric) under
time reversal. The signs (and possible prefactors) of F, are defined such that the
Onsager fluxes J, are just the curents J, Y ,T;; and Jipeprn as will be shown below.
Applying the symmetry restrictions and Eq. (2.15), we obtain analogously to Eq.
(2.4) in lowest order

1 1 1 1
R = 50iE:E; + 5-hid5h + 5mijkivi ok

1

2.16
+%/€Z](82T)(8]T) + KjflezajT ( )

The first term with the usual uniaxial form for the conductivity tensor o;; = o, 6;; +
o.nin; 1s due to ohmic heating. The second term with the rotational viscosity v,
describes the rotational friction of the director relative to the moving fluid. To satisfy
n? = 1, the variational derivative in the definition of the molecular field must be
restricted to variations perpendicular to the director itself. This means h L n and
is guaranteed by applying to h the tensor 52# = 6,; — n;n; projecting onto the plane
perpendicular to the director. The third term with three viscosities (see below)

describes the viscous heating. The two temperature-gradient terms are neglected,

el

although, for a nonzero external electric field, the thermoelectric coupling oc &f;

induces a thermal current in linear order (Chapter 2.1). ©

6Sometimes, a further term €ijrhi0; Ey describing the dynamic analog of the flexoelectric effect,
is introduced [58]. It is of higher order if there are no field gradients in the basic state; the
corresponding material parameter has not been measured.
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The dissipative currents are determined by rearranging Eq. (2.12) without the

convective terms in a gradient and a sum of Onsager forces multiplied by fluxes,

~ 86
7D 7D 7D y, _ gD
ro= 6j< i T oI v Z-]‘_@'niji_ Ej)

+ J°-E.+h-Y" -TP0w,— IV - VT, (2.17)

and comparing the result with Eq. (2.16). The gradient parts are balanced by J.,
and the dissipative currents are (in the approximations of the SM)

JP = g}g = o04F;, (2.18)
P =28 = sk, (219

— Til]? = aii = imves = g + (o + A nmmeng Ay
b (as— w)(m/xjknk iy Awns), (2.20)

where A;; = (G;v; + 0;v;)/2. As a result of the symmetry restrictions, one gets in
Eq. (2.20) three general shear-viscosity coefficients. They have been expressed in
terms of the more familiar Erickson-Leslie coefficients oy, oy and a5 [26, 27], and by

~1 and a reversible parameter A to be defined below.

Reversible parts for zero transport

The Onsager symmetries (2.15) are valid also for the reactive Onsager fluxes J! =
M. zFp3, but now, of course, the heat production Eq. (2.14) has to vanish. This
implies that the reactive Onsager matrix M ; has no diagonal terms and only those

cross terms that couple variables with opposite time-reversal symmetry. This leads

to J. = J =0, and to

Y! 0 %)\ijk by,
! = . 2.21
( T ) ( —3Mkii 0 — ;v (2.21)

The symmetries lead to A;jz = )\15$nk + )\252-Jicnj and the condition of vanishing
relative motion of the director in the case of a rigidly rotating fluid, dn = w x n for
dv; = d;v; and V x v = 2w, leads to Ay — A\ = 2.7 Thus A can be written as

“A more formal derivation using conservation of the angular momentum can be found in [58].
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Often, the sum of the reactive and dissipative parts of the momentum-flux tensor is
expressed in terms of the Erickson-Leslie coefficients aq, ..., ag [26, 27], given in Eq.
(2.28) below. Although this formulation is less systematic, it will be used throughout
this thesis, mainly to enable an easy comparison with existing work. An intuitive

picture of the various viscosities is given e.g. in [70, 31].

Transport parts

The transport or convective currents are related to Galilean invariance and therefore
reversible as well. The condition that the dissipation function of the convective
currents, Eq. (2.12) with J;, = J =Y = 0, vanishes for any v, can only be satisfied
by an extra part T}, of the momentum-flux tensor. The momentum-flux tensor
(including the isotropic pressure) is the only non-convective current which gives

contributions o v in (2.12) and thus can balance all other advective contributions.

This leads to p
th] = p(SZ']‘ + Ty — EiDj, Ty = an—;nkﬂ', (223)
where the pressure is given by the Gibbs relation [71, 59] p = —¢ + T's + p,,v* + pq;',
and some transport parts were expressed by dip = D;0; E; —h;j0in;+ pmv;0;v;+s0;T.
The pressure will be eliminated later. The second term in Eq. (2.23), the Erickson
stress [25], is the (nonlinear) counter term of the director advection term v - Vn.
In physical terms, velocity gradients change the elastic energy by changing the local
director distortions which must be balanced by the mechanical power (i.e. velocity
times a force) v;0;7;;. The third term FE;D; := —TZ-“;-Z is the balance to the charge
advection. Its gradient, the electric volume force, is the main driving force of EHC.
By redefining the pressure as p = p — %ﬁoﬁJ_EQ, the volume force can be written
as —aijjl = pE; + P;0;E;, where the "polarization” P, = e,n;n;F; contains the
inhomogeneity of the dielectric displacements. The polarization part is nonlinear

and will be neglected in the following.

2.3 Basic equations

In summary, the equations of the SM are
(Oi+v-V)p = =V .(agF), (2.24)
(Bi+v-V)n = wxnts(Mn— h), (2.25)

= "
pm(at +v- V)UZ = —@-p — 6]-(7@-]- + T;;ZSC) + pEi, (226)
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with the static conditions p = d;¢;; F; (Poisson equation), E; = Eo(t)é:3— 0;¢ (exploi-
ting V x E = 0 and separating E into an external field and a field inhomogeneity),
n? = 1 (constant order parameter), and V - v = 0 (incompressibility).

Eq. (2.24) is just the charge balance for a weak anisotropic ohmic conductor
where both the charge density and the current are relevant. Without forces, the
director in Eq. (2.25) would move with the surrounding fluid like a rod in a river,
N=(0i+v-V)n—w xn =0, where w = (V x v)/2 is the local fluid rotation.
The forces onto the director in Eq. (2.25) come from the orientational elasticity
described by the molecular field h, and from a coupling of the director to the fluid
shear A;; = (0;v; +0,v;)/2 ("flow alignment”). The projection tensor 5L = 6;; — nin;
guarantees n? = 1. The molecular field is given by

6
hi = — (Kpnkifmmne) — €a(n - E)E;, (2.27)

oni
with K;jrn; jng; from Eq. (2.5). Sometimes, Eq. (2.25) is written as
n x (h 4+ %N 4+ 12An) = 0 with 2 = =My [72, 25, 73]. Both forms of the
director equation can be expressed in terms of the Erickson-Leslie coefficients with
the relations v1 = as — ag and A = (a2 + a3)/(az — a3) obtained with the help of
angular momentum conservation.
The negative viscous stress tensor (momentum-flux tensor) T;;“c has a reactive

part T/. and a dissipative part TD given by the Eqs. (2.21) and (2.20), respectively.

]

Often, the molecular field in 77, is expressed with the help of Eq. (2.25) in terms of

ij
N and An and the two parts are written together in terms of the Leslie coeflicients,

visc
— Tij = ozlnmjnknlAkl + OZQTL]'JVZ' + agniNj

—I-OZ4AZ']' + a5njnkAki + oz6n2-nkAkj. (228)

In this formulation, the Onsager symmetries have to be condidered separately leading
to the so-called Parodi relation [74] ay+ a3 = ag—as. At last, the nonlinear Erickson
stress m;; in Eq. (2.26) is given by Eq. (2.23). In the Egs. (2.24)-(2.26), some small
contributions have been neglected, e.g., the flexoeffect and the polarization part of
the electric volume force (Chapter 2.2.2).

Equations (2.24) to (2.26) represent five independent equations for the potential
¢ of the electric field inhomogeneity, two director components (n, and n, for the
planar geometry), and two velocity fields or a suitable representation for them, e.g.
the toroidal and a poloidal potential g and f for divergence-free fluids[75]

v = VXxzg+V X (Vxzf)=eg+6f, (2.29)
€ = (0,,—0,,0), §=1(02,,02,-92,—0.,). (2.30)

xy? Tyz?
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To eliminate the pressure, one takes the y and z components of the curl of (2.26)
[48] or applies the Hermitean conjugate of the operators § and € [76, 77, 62].

The planar-homogeneous "rigid” BC, used exclusively in this work, are

é(z==+d/2) =0 (ideally conducting plates),
n(z = +d/2) = (1,0,0)  (rigid anchoring), (2.31)
v(z =+d/2) =0  (finite viscosity).

In the horizontal x and y directions, I assume the system to be infinite (translationally
invariant). To avoid destruction of the NLC by electrolytic effects, the cell is driven
with an AC voltage,
V2
Eo(t) ==

cos wot, (2.32)

which conveniently introduces the external frequency as a second control parameter
(typically, wg/27x = 10...1000 Hz). The instability mechanism, however, is active also
for DC.

In the table, the material parameters of the NL.LC are summarized that are con-

tained in the SM.



