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Abstract

In this thesis I study some fundamental aspects of pattern formation in electro-
convection of nematic liquid crystals. The system consists of a nematic liquid crystal
with negative or only mildly positive dielectric anisotropy sandwiched between two
transparent electrodes and aligned planar-homogeneously. Some electric conductiv-
ity is needed. When applying an AC voltage and increasing its rms value above a
certain threshold, there is an instability leading to a spatially periodic state which
can be measured by optical methods. The patterns depend on the material param-
eters of the nematic, the thickness d of the layer, and on the applied frequency. I
treat the case of relatively low frequencies, i.e., the so-called conductive range. The
physical model introduced in this thesis should be valid for other cases, too.

A long-standing problem in electroconvection is the Hopf bifurcation leading to
travelling rolls, observed in thin cells with relatively low conductivity. The standard
hydrodynamic description (”Standard model” SM) going back to Helfrich where the
nematic is treated as an anisotropic ohmic conductor, always predicts a stationary
bifurcation leading to stationary rolls. Also the inclusion of additional effects like
flexoelectricity has up to now not improved the situation. Similarily, the small
hysteresis observed in very sensitive experiments in some parameter ranges cannot
be understood with the standard description, which always predicts a continuous
bifurcation.

This gave rise to develop and explore in this thesis a generalization of the SM,
the Weak Electrolyte Model (WEM).

In Chapter 2, I review the derivation of the SM with the methods of generalized
hydrodynamics. There are several approximations along the path from the ”first
principles” (the hydrodynamic conservation laws and balance equations, and the
microscopic Maxwell equations) to the basic equations of the SM. This chapter is
intended to show these approximations.

In Chapter 3, I formulate the WEM. In contrast to the ohmic behaviour assumed
in the SM, the WEM describes the conductive properties of the nematic by the
dynamics of two species of oppositely charged freely mobile ions. They originate
from impurities or dopants by a dissociation-recombination reaction and migrate
relative to the fluid, as in usual weak electrolytes, with velocities proportional to their
mobilities and proportional to the electric field. The ionic species are assumed to have
constant, possibly different, mobility tensors u* with principal values perpendicular
and parallel to the director, uf and ,uﬁ, respectively. Experimental evidence for the
relevance of weak electrolytic effects in nematics with long recombination times Tye.
actually goes back more than 20 years.
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The WEM expresses the total space-charge density, which already appears in the
SM, as the difference of the number densities of the two ionic species. In addition,
migration leads to a charge separation and gives rise to a new field, which can be
expressed in terms of the local conductivity o (r,t) (" charge-carrier mode”) propor-
tional to the sum of the number densities weighted with the mobilities uT and pu7.
The WEM contains two new dimensionless parameters,
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Here, v, is a rotational viscosity, K;; the splay constant, d the layer thickness,
and o{? the conductivity in the equilibrium state. The mobility parameter & is
proportional to the geometric mean of the mobilities 4T and p, and describes the
rate at which the charge-carrier mode is excited. The recombination parameter 7 is
the inverse recombination time 7. in units of the inverse of the director relaxation
time 74, and describes the relaxation of the charge-carrier mode towards equilibrium
[0, (r,t) = 079 by the dissociation-recombination reaction.

Apart from the case of very special boundary conditions, the non-convecting
(motionless) basic state of the WEM is nontrivial and implies boundary layers of the
charge carriers. I investigate these boundary layers in Chapter 4 and conclude that
they can be neglected in the relevant experiments. This is an important result since
it means that the predictions of the WEM are rather independent of the boundary
conditions for the charge carriers, involving, in general, the complicated and unknown
electrochemistry of the electrodes. This conclusion is supported by experimental
evidence. In addition, the linear and weakly-nonlinear analysis in the following
chapters is simplified considerably by this assumption. In the rest of this work, I use
physically clean ”blocking” boundary conditions where the charge carriers cannot
cross the electrodes.

In Chapter 5, I linearize the WEM around the trivial basic state (without bound-
ary layers) using lowest-order expansions for the space and time dependence of all
fields. This allows for an analytic approach. The analysis gives the onset of insta-
bility and the wavevector and frequency (in the case of the Hopf bifurcation) of the
new solution describing a stationary or travelling pattern. The possibility for a Hopf
bifurcation can be seen quite easily. A first version of this analysis restricted to nor-
mal rolls (roll axis perpendicular to the homogeneous alignment) has been published
[1].

The WEM predicts both, Hopf and stationary bifurcations, depending on the
parameters. The condition for a Hopf bifurcation is, in a good approximation,
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where the dimensionless function C’(wp) is of order 10. It increases with the ex-
ternal frequency wqy of the AC voltage if the dielectric anisotropy is negative, and
depends otherwise only on scaled material parameters of the SM. Assuming long
recombination times of the order of seconds, this equation explains why travelling
rolls are observed for all external frequencies in thin cells and for liquid crystals with
a relatively low equilibrium conductivity o [of the order of 1078(Qm)~!], while they
are observed only for higher frequencies in an intermediate range of ¢* and d. The
precise value and the temperature dependence of the recombination time 7. are
unknown; so no quantitative predictions of the system parameters at the transition
from the Hopf bifurcation to the stationary one (codimension-two point) could be
made. The experimental findings on the nematics MBBA and 152 (see p. 5 or Ref.
2 for the chemical formula for this compound) were consistent with 7. of the order
of 10 s.

In the Hopf regime and not too near to the codimension-two point, the recombi-
nation effects drop out (one can set 7. = 00 in the formulas) enabling a quantitative
experimental test of the predicted oscillation frequency of the travelling rolls (Hopf
frequency). In this case, the Hopf frequency is given by the left-hand side of the pre-
vious equation (see also Eq. (39) in Ref. [1]), i.e., it is proportional to d=3, (¢5%)~1/2,
C'(wp), and to (uTp )2, Here the geometric mean (u ] )Y/? is the only parameter
that is not contained in the SM.

Quantitative comparisons with experiments are made for MBBA and 152. For
I52, some material parameters of the SM are not known. They were determined by
fitting the prediction of the SM to the experimental results for the threshold voltage
and the roll angle (with respect to the homogeneous alignment) as function of the
AC frequency wqy at different temperatures. It is possible to use the SM since it
predicts nearly the same threshold and roll angle as the WEM.

Fits to the measured Hopf frequency give values for (u7u7)/? of the order of
107*m?/(Vs) in MBBA and 152, consistent with published data. With (uTpu7)'?
fitted for each temperature to one data point, the Figures 5.7 - 5.11 (see also Figs. 2a
and 2b in Ref. [2]) show for 152, that the difference between the WEM prediction and
the measured values differed typically by less than 10% for changes of d* by a factor
of 8 (two different cells), of (¢5%)!/2 by a factor of 2.2 (variation of the temperature),
and of C'(wp) by a factor of 2.5 (variation of the external frequency). In MBBA, the
Hopf frequency increases much faster with wy. In the Figures 5.7 and 5.8 it is shown
that the WEM predicts this increase nearly quantitatively in a range covering more
than a factor of 10. The different behaviour of the two materials is mainly due to
the different dielectric anisotropies: €, &~ —0.52 for MBBA, ¢, ~ —0.056 (30°C)---0
(60°C) for I52.

The mechanism of the Hopf bifurcation is found to be similar to that of other
pattern-forming systems showing a Hopf bifurcation: a primary destabilization feed-
back mechanism is coupled to a stabilizing second feedback cycle which is here me-
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diated by the charge-carrier field, with a slow intrinsic time scale (Figure 5.12). In
many aspects, the o field is reminiscent of the slow concentration field of thermal
convection in binary fluid mixtures.

Chapter 6 is devoted to the weakly-nonlinear analysis of the most important
contributions of the WEM equations. I calculate approximate analytic expressions
of the coefficients of a one-dimensional complex Ginzburg-Landau equation (CGL)
describing the dynamics of the envelope (including of course the actual amplitude) of,
say, the left-travelling waves. The weakly-nonlinear analysis predicts that the Hopf
bifurcation expected for long recombination times 7, is always continuous and that
the nonlinear saturation is stronger than in the SM (smaller amplitude). Decreasing
Trec; the bifurcation becomes stationary and, in general, also (slightly) hysteretic.
For even shorter recombination times, it becomes continuous (Figures 6.4 and 6.5)
and in the limit 7., — 0, the WEM approaches the SM.

This agrees qualitatively with the experiments on I52. It can be concluded that
three different predictions: the amplitude of the nonlinear state after the jump in the
stationary-hysteretic regime, the decrease of the oscillation frequency on increasing
the voltage in the Hopf regime, and the (linear) condition for a Hopf bifurcation,
agree with the experiments assuming a recombination time of 10-20s.

Two experiments with MBBA cells showed a more puzzling behaviour. The lin-
ear dynamics assessed by subcritical fluctuations is oscillatory, but the deterministic
bifurcation seemed to be stationary-hysteretic. I show that the following interpreta-
tion is compatible with the WEM: the Hopf bifurcation is actually continuous, but a
subsequent jump to a nonlinear state takes place at a value of the control parameter
which can not be distinguished experimentally from the threshold value. Recent
experiments on the nematic mixture Merck Phase 5 confirm this interpretation.

The oscillatory behaviour (Hopf bifurcation) in the two MBBA eperiments men-
tioned above was obtained from the correlation function of fluctuations below thresh-
old, which anticipate the linear-deterministic dynamics. The strength of the fluc-
tuations was observed to be (only) 30% to 40% higher than expected from naive
estimates based on the equipartition theorem for thermal fluctuations of the direc-
tor only (without considering charge-density fluctuations). Can this result which
indicates that thermal fluctuations are nearly those of an equilibrium system, be
understood? To give a better understanding of thermal fluctuations in this (and
other hydrodynamic nonequilibrium systems) I apply in Chapter 7 the Landau ap-
proach of fluctuating hydrodynamics to the SM equations. The conclusion is that a
" generalized equipartition theorem can indeed be applied to the director fluctuations
and that charge-density fluctuations indeed contribute in the two experiments only
by, respectively, 3% and 10% [3,4]. Using the WEM would lead to a factor of two
(two critical left- and right travelling modes instead of one stationary mode) that is
cancelled by the correlation time in the denominator of Eq. (7.41), which the WEM



predicts to be twice as long as in the SM. The correlation time, determined in the
experiments by the correlation function as well, agrees with the WEM, and not the
SM.

A concluding chapter attempts to give some directions for future research. The
coefficients for the CGL were derived in this thesis for the most simple case of
either left- or right-travelling waves. However, one has to consider the interaction
of degenerate critical modes, and, for finite amplitudes, also slowly-relaxing modes
excited by the nonlinearities. Coupled equations for these modes can possibly explain
quantitatively the spatio-temporal chaos (STC) of localized states observed in 152 at
lower temperatures. The CGL predicts also a small region where travelling waves
are unstable to long-wavelength modulations (Benjamin—Feir instability). It would
be fascinating to explain the amplitude-STC of extended states observed in 152 at
higher temperatures, by a CGL in the Benjamin—Feir unstable range. This would
enable a quantitative experimental comparison with the predictions of one of the
most simple and generic equations producing STC.
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