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Theorie elektrohydrodynamischer Instabilitäten

in nematischen Flüssigkristallen
nahe des Einsatzpunktes

(Deutsche Zusammenfassung)

In dieser Dissertation untersuche ich einige grundlegende Aspekte strukturbilden-
der Prozesse in Elektrokonvektion nematischer Flüssigkristalle. Das System besteht
aus einem Nematen mit negativer oder nur leicht positiver dielektrischer Anisotropie
zwischen zwei transparenten Elektroden. In der hier untersuchten Konfiguration
ist die lokale Orientierung (der Direktor) des Nematen an den Elektroden planar-
homogen ausgerichtet. Legt man eine Wechselspannung an und erhöht die effektive
Spannung oberhalb eines bestimmten Schwellenwertes, so setzt eine Instabilität zu
einem periodischen Muster ein, welches mit optischen Methoden gemessen werden
kann. Die Muster hängen von den Materialparametern, der Schichtdicke und der
Frequenz der angelegten Spannung ab. In dieser Arbeit wird der ”konduktive Bere-
ich” niedriger Frequenzen behandelt. Das vorgestellte Modell sollte jedoch auch für
andere Fälle anwendbar sein.

Ein lange Zeit ungelöstes Problem in Elektrokonvektion ist die Hopfbifurkation
zu laufenden Wellen, die man in dünnen Zellen mit relativ niedriger Leitfähigkeit
beobachtet. Die übliche hydrodynamische Beschreibung von Helfrich, hier Stan-
dardmodell (SM) genannt, behandelt den Nematen wie einen anisotropen ohmschen
Leiter und sagt in allen Fällen eine stationäre Bifurkation voraus. Eine andere mit
dem SM nicht erklärbare Beobachtung stellt die in manchen Parameterbereichen mit
empfindlichen Experimenten gemessene Hysteresis dar.

Dies war die Motivation, in dieser Dissertation eine Verallgemeinerung des SM zu
formulieren und anzuwenden, das Modell des schwachen Elektrolyten (Weak Elec-
trolyte Model, WEM).

Im Kapitel 2 gebe ich eine Skizze der Herleitung des Standardmodells mit den
Methoden der generalisierten Hydrodynamik. Ziel ist es, die vielen Näherungen auf
demWeg von den erten Prinzipien (hydrodynamische Erhaltungssätze und Bilanzgle-
ichungen sowie die mikroskopischen Maxwell-Gleichungen) zu den Grundgleichungen
des SM aufzuzeigen.

Im Kapitel 3 formuliere ich das WEM. Im Gegensatz zu dem im SM angenomme-
nen ohmschen Verhalten werden die Leitfähigkeitseigenschaften des Nematen im
WEM durch zwei frei bewegliche Ladungsträgersorten mit entgegengesetzter Ladung
beschrieben. Sie entstehen aus Verunreinigungen oder dotierten Molekülen durch
eine Dissoziations-Rekombinations-Reaktion und bewegen sich, wie in schwachen
Elektrolyten, relativ zu dem sie umgebenden Fluid mit einer Geschwindigkeit, die
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proportional zu ihren Mobilitäten und dem elektrischen Feld sind. Die Mobilitäten
µ± der zwei Ladungsträgersorten sind tensoriell mit den Hauptwerten µ±

⊥ und µ±‖
senkrecht und parallel zum Direktor. Experimentelle Evidenz für die Wichtigkeit
elektrolytischer Effekte gibt es seit mehr als 20 Jahren.

Das WEM drückt die Raumladungsdichte, die auch im SM erscheint, durch
die Differenz der Teilchendichten der beiden Ladungsträgersorten aus. Die Migra-
tion der Ladungsträger führt zu einer Ladungstrennung und regt ein neues Feld
(”Ladungsträger-Mode”) an, welches durch die lokale Leitfähigkeit ausgedrückt wer-
den kann. Die lokale Leitfähigkeit ist proportional zu der mit den Mobilitäten µ±

⊥
gewichtete Summe der Teilchendichten der Ladungsträger.

Das WEM enthält zwei neue dimensionslose Parameter, die nicht im SM enthalten
sind,

α̃ =
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√

√

√

µ+⊥µ
−
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2
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τd
τrec
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2
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,

mit der Rotationsviskosität γ1 , der OrientierungselastizitätK11 für Splay-Verzerrun-
gen des Direktors, der Schichtdicke d und der Leitfähigkeit σeq⊥ im Gleichgewicht. Der
Mobilitätsparameter α̃ ist proportional zum geometrischen Mittel der Mobilitäten
und beschreibt die Stärke der Anregung der Ladungsträger-Mode. Der Rekombi-
nationsparameter ist definiert als die inverse Rekombinationszeit (τrec)

−1 in Ein-
heiten der inversen Direktor-Relaxationszeit (τd)

−1 und beschreibt die Relaxation der
Ladungsträger-Mode zum Gleichgewicht der Dissoziations-Rekombinations-Reaktion.

Im allgemeinen ist der nicht konvektierende Grundzustand des WEM nichttriv-
ial und enthält Randschichten, in denen die Ladungsträger nicht die Gleichgewicht-
skonzentration haben. Im Kapitel 4 zeige ich, daß diese Randschichten in den meisten
relevanten Experimenten vernachlässigt werden können. Dies ist ein wichtiges Ergeb-
nis, da es die Voraussagen des WEM unabhängig von den Randbedingungen für die
Ladungsträger macht, die von den komplizierten und unbekannten elektrochemischen
Prozessen an den Elektroden abhängen. Experimente unterstützen diese Annahme.
Im restlichen Teil dieser Arbeit benutze ich physikalisch saubere isolierende Randbe-
dingungen, bei denen die Ladungsträger die Elektroden nicht durchdringen können.

Im Kapitel 5 linearisiere ich die Grundgleichungen des WEM um den trivialen
Grundzustand, d.h. unter Vernachlässigung der Randschichten. Um analytische
Resultate zu erhalten, verwende ich Modenapproximationen in niedrigster Ordnung.
Zunächst zeige ich, daß man trotzdem quantitativ richtige Ergebnisse erhält. Die
lineare Analyse gibt die Schwellenspannung, bei der die Instabilität einsetzt und
den Wellenvektor des entstehenden Rollenmusters; im Falle einer Hopfbifurkation
zusätzlich die Frequenz der laufenden Wellen.

Das WEM sagt, in Abhängigkeit von den Parametern, sowohl stationäre Bifurka-
tionen als auch Hopfbifurkationen voraus. Die Bedingung für eine Hopfbifurkation
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ist in guter Näherung
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wobei die dimensionslose Funktion C ′(ω0) von der Grössenordnung 10 ist. Falls
die dielektrische Anisotropie negativ ist, nimmt C ′(ω0) mit der Frequenz ω0 der
angelegten Wechselspannung zu. Unter der Annahme langer Rekombinationszeiten
(wofür es für MBBA experimentelle Evidenz gibt), erklärt diese Gleichung qualitativ,
warum Hopfbifurkationen nur in dünnen Zellen und für relativ niedrige Leitfähigkeiten
von der Grössenordnung 10−8(Ωm)−1 beobachtet werden, und daß die Tendenz zu
einer Hopfbifurkation mit steigender äußeren Frequenz zunimmt. Die experimentellen
Ergebnisse für die Parameter am Kodimension-2 Punkt (der Grenze zwischen sta-
tionären und laufenden Rollen) sind konsistent mit einer Rekombinationszeit von
10s.

Ist man im Hopf-Bereich und nicht zu nahe am Kodimension-2 Punkt, so kann
man die Rekombinationseffekte vernachlässigen und erhält quantitative Voraussagen
für die Hopffrequenz. Die Hopffrequenz ist in diesem Fall durch die linke Seite der
letzten Ungleichung gegeben, d.h. sie ist proportional zu d−3, (σeq⊥ )−1/2, C ′(ω0), und
zu (µ+⊥µ

−
⊥)

1/2. Das geometrische Mittel (µ+⊥µ
−
⊥)

1/2 der Mobilitäten ist der einzige
nicht im SM enthaltene Parameter.

Quantitative Vergleiche werden mit Experimenten an MBBA und I52 durchgeführt.
Da nicht alle Materialparameter des SM für I52 bekannt sind, werden diese zunächst
bestimmt, indem man die Voraussage des WEM an die gemessenen Thresholdspan-
nungen und Rollenwinkel (Winkel der Rollenachsen zur Gleichgewichtsorientierung)
als Funktion von ω0 für verschiedene Temperaturen anpaßt. Es ist möglich, dafür das
SM zu nutzen, da es nahezu den gleichen Threshold und den gleichen Rollenwinkel
voraussagt wie das WEM.

In beiden Materialien stimmen die vorausgesagte mit den gemessene Hopffre-
quenzen überein, falls (µ+⊥µ

−
⊥)

1/2 von der Grössenordnung 10−10m2/(Vs) ist. Dies ist
konsistent mit unabhängigen Messungen der Mobilitäten. Nachdem man die Mo-
bilität an einen Datenpunkt angepaßt hat, sind die Voraussagen für andere Werte
von ω0 und d fest. Die Figuren 5.9 - 5.11 zeigen, daß die Voraussage des WEM
und die gemessenen Werte in weiten Parameterbereichen um typischerweise weniger
als 10 % differieren. Insbesondere variierte man in den Experimenten d3 um den
Faktor 8 (zwei verschiedene Zellen),

√
σ⊥

eq um den Faktor 2.2 (Variation der Tem-
peratur), und C ′(ω0) um den Faktor 2.5 (Variation der Frequenz der Wechselspan-
nung). In MBBA ändert sich die Hopffrequenz viel rapider mit steigendem ω0. Die
Figuren 5.7 und 5.8 zeigen, daß das WEM diesen Anstieg nahezu quantitativ in
einem Bereich beschreibt, der mehr als einen Faktor 10 in der Hopffrequenz umfaßt.
Das verschiedene Verhalten der beiden Materialien läßt sich auf die dielektrischen
Anisotropie zurückführen, die in MBBA viel negativer ist.
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Es stellte sich heraus, daß der Mechanismus der Hopfbifurkation ähnlich den
Mechanismen anderer Systeme ist, die eine Hopfbifurkation zeigen (Figur 12): Der
für die Instabilität verantwortliche primäre Carr-Helfrich-Mechanismus ist an eine
sekundäre stabilisierende Rückkopplungsschleife angebunden, die vom langsam re-
laxierenden Ladungsträgerdichte-Feld erzeugt wird. In vielerlei Hinsicht ist die Rolle
des Ladungsträger-Feldes analog zu der des Konzentrationsfeldes in thermischer Kon-
vektion in binären Mischungen.

In Kapitel 6 wird die schwach-nichtlineare Analyse der wichtigsten Terme der
WEM - Grundgleichungen durchgeführt. Ein wichtiges Ergebnis sind die Koef-
fizienten einer eindimensionalen komplexen Ginzburg–Landau Gleichung (CGL), die
die Dynamik der Einhüllenden links- oder rechtslaufender Wellen beschreibt. Die
schwach-nichtlineare Analyse sagt voraus, daß die für lange Rekombinationszeiten
τrec erwartete Hopfbifurkation immer kontinuierlich (vorwärts) ist und daß die nicht-
lineare Sättigung stärker ist als im SM, d.h., die Amplituden sind bei gleichem Ab-
stand vom Threshold kleiner. Für kleineres τrec wird die Bifurkation stationär und
im allgemeinen (schwach) hysteretisch. Für noch kürzere Rekombinationszeiten wird
die Bifurkation wieder kontinuierlich und im Grenzfall τrec → 0 geht das WEM in
das SM über (Figur 6.4).

Dies stimmt qualitativ mit den I52 Experimenten überein. Schlußfolgernd kann
gesagt werden, daß drei verschiedene Voraussagen zu einer Rekombinationszeit in der
Größenordnung 10-20s führen: Die Amplitude des nichtlinearen Zustands nach dem
Sprung im hysteretisch-stationären Bereich, die Abnahme der gemessenen Frequenz
der laufendenWellen mit der angelegten Spannung im Hopf-Bereich, und die (lineare)
Bedingung für eine Hopfbifurkation.

Zwei Experimente an MBBA zeigen ein verwirrenderes Verhalten. Die Korrela-
tionen subkritischer Fluktuationen lassen sich nur mit einer oszillierenden linearen
Dynamik erklären, aber die deterministische Bifurkation ist stationär-hysteretisch.
Ich zeige, daß folgende Interpretation konsistent mit dem WEM ist: Die Hopfbi-
furkation ist tasächlich kontinuierlich, aber es erfolgt ein Sprung zu einem stationären
nichtlinearen Zustand bei einer Spannung, die experimentell nicht von der Threshold-
Spannung unterschieden werden kann. Aktuelle Experimente am Nematen Phase 5
bestätigen diese Vermutung.

Die gemessene Fluktuationsstärke der oben erwähnten subkritischen Fluktuation
war nur 30% bis 40% höher, als man es von einer naiven Abschätzung mit Hilde
des Gleichverteilungssatzes für thermische Fluktuation des Direktors (unter Ver-
nachlässigung der Fluktuationen der Ladungsträger) enerwarten würde. Kann dieses
Ergebnis, nach dem die thermischen Fluktuationen in diesem System nahezu die
eines Gleichgewichtssystems sind, verstanden werden? Um ein besseres Verständnis
thermischer Fluktuationen in diesen und anderen hydrodynamischen Systemen zu er-
halten, wende ich im Kapitel 7 Landaus Methode hydrodynamischer Fluktuationen
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auf die Grundgleichungen des SM an. Das Ergebnis ist, das, in der Tat, die Direktor-
fluktuationen mit einem geeignet verallgemeinertem Gleichverteilungssatz bestimmt
werden können, und daß die Fluktuationen der Raumladungen nur zu 3% bzw. zu 10
% in den beiden Systemen beitragen. Das WEM würde zu einen Faktor 2 führen, da
man zwei kritische Moden (links-und rechtslaufende Wellen) hat. Dieser Faktor wird
jedoch kompensiert durch die Korrelationszeit im Nenner von Gl. (7.41), die nach
der Voraussage des WEM doppelt so lang ist wie im SM. Diese Zeit wurde ebenfalls
experimentell bestimmt. Sie stimmt in beiden Experimenten mit dem WEM, nicht
mit dem SM, überein.

Im abschließendem 8. Kapitel versuche ich, Hinweise auf interessante, noch of-
fene Probleme zu geben. Die Koeffizienten der CGL wurden in dieser Disserta-
tion für den einfachst-möglichen Fall der links oder rechtslaufende Wellen in einer
Dimension ermittelt. Im allgemeinen muß man die Kopplung der links- und recht-
slaufenden Wellen (für Schrägrollen gibt es sogar vier lineare kritische Moden), sowie
möglicherweise die Kopplung an andere langsam relaxierende Moden, berücksichtigen.
Gekoppelte Gleichungen dieser Art können möglicherweise das in Experimenten
an I52 beobachtete raumzeitlich Chaos lokalisierter Zustände erklären. Besonders
faszinierend ist die Möglichkeit, das ebenfalls beobachtete raumzeitliche Chaos aus-
gedehnter Zustände auf die Benjamin–Feir Instabilität der CGL zurückzuführen.
Damit könnte man die Voraussagen der nach der Kuramoto-Sivashinsky-Gleichung
einfachsten generischen Gleichung für raumzeitliches Chaos quantitativ mit Experi-
menten vergleichen.
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Abstract

In this thesis I study some fundamental aspects of pattern formation in electro-
convection of nematic liquid crystals. The system consists of a nematic liquid crystal
with negative or only mildly positive dielectric anisotropy sandwiched between two
transparent electrodes and aligned planar-homogeneously. Some electric conductiv-
ity is needed. When applying an AC voltage and increasing its rms value above a
certain threshold, there is an instability leading to a spatially periodic state which
can be measured by optical methods. The patterns depend on the material param-
eters of the nematic, the thickness d of the layer, and on the applied frequency. I
treat the case of relatively low frequencies, i.e., the so-called conductive range. The
physical model introduced in this thesis should be valid for other cases, too.

A long-standing problem in electroconvection is the Hopf bifurcation leading to
travelling rolls, observed in thin cells with relatively low conductivity. The standard
hydrodynamic description (”Standard model” SM) going back to Helfrich where the
nematic is treated as an anisotropic ohmic conductor, always predicts a stationary
bifurcation leading to stationary rolls. Also the inclusion of additional effects like
flexoelectricity has up to now not improved the situation. Similarily, the small
hysteresis observed in very sensitive experiments in some parameter ranges cannot
be understood with the standard description, which always predicts a continuous
bifurcation.

This gave rise to develop and explore in this thesis a generalization of the SM,
the Weak Electrolyte Model (WEM).

In Chapter 2, I review the derivation of the SM with the methods of generalized
hydrodynamics. There are several approximations along the path from the ”first
principles” (the hydrodynamic conservation laws and balance equations, and the
microscopic Maxwell equations) to the basic equations of the SM. This chapter is
intended to show these approximations.

In Chapter 3, I formulate the WEM. In contrast to the ohmic behaviour assumed
in the SM, the WEM describes the conductive properties of the nematic by the
dynamics of two species of oppositely charged freely mobile ions. They originate
from impurities or dopants by a dissociation-recombination reaction and migrate
relative to the fluid, as in usual weak electrolytes, with velocities proportional to their
mobilities and proportional to the electric field. The ionic species are assumed to have
constant, possibly different, mobility tensors µ± with principal values perpendicular
and parallel to the director, µ±

⊥ and µ±‖ , respectively. Experimental evidence for the
relevance of weak electrolytic effects in nematics with long recombination times τrec
actually goes back more than 20 years.
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The WEM expresses the total space-charge density, which already appears in the
SM, as the difference of the number densities of the two ionic species. In addition,
migration leads to a charge separation and gives rise to a new field, which can be
expressed in terms of the local conductivity σ⊥(r, t) (”charge-carrier mode”) propor-
tional to the sum of the number densities weighted with the mobilities µ+⊥ and µ−⊥.
The WEM contains two new dimensionless parameters,

α̃ =

√

√

√

√

µ+⊥µ
−
⊥γ1π

2

σeq⊥ d
2

, r̃ =
τd
τrec

=
γ1d

2

K11π2τrec
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Here, γ1 is a rotational viscosity, K11 the splay constant, d the layer thickness,
and σeq⊥ the conductivity in the equilibrium state. The mobility parameter α̃ is
proportional to the geometric mean of the mobilities µ+⊥ and µ−⊥ and describes the
rate at which the charge-carrier mode is excited. The recombination parameter r̃ is
the inverse recombination time τrec in units of the inverse of the director relaxation
time τd, and describes the relaxation of the charge-carrier mode towards equilibrium
[σ⊥(r, t) = σeq⊥ ] by the dissociation-recombination reaction.

Apart from the case of very special boundary conditions, the non-convecting
(motionless) basic state of the WEM is nontrivial and implies boundary layers of the
charge carriers. I investigate these boundary layers in Chapter 4 and conclude that
they can be neglected in the relevant experiments. This is an important result since
it means that the predictions of the WEM are rather independent of the boundary
conditions for the charge carriers, involving, in general, the complicated and unknown
electrochemistry of the electrodes. This conclusion is supported by experimental
evidence. In addition, the linear and weakly-nonlinear analysis in the following
chapters is simplified considerably by this assumption. In the rest of this work, I use
physically clean ”blocking” boundary conditions where the charge carriers cannot
cross the electrodes.

In Chapter 5, I linearize the WEM around the trivial basic state (without bound-
ary layers) using lowest-order expansions for the space and time dependence of all
fields. This allows for an analytic approach. The analysis gives the onset of insta-
bility and the wavevector and frequency (in the case of the Hopf bifurcation) of the
new solution describing a stationary or travelling pattern. The possibility for a Hopf
bifurcation can be seen quite easily. A first version of this analysis restricted to nor-
mal rolls (roll axis perpendicular to the homogeneous alignment) has been published
[1].

The WEM predicts both, Hopf and stationary bifurcations, depending on the
parameters. The condition for a Hopf bifurcation is, in a good approximation,

C ′(ω0)
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d
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√

√

√

√

µ+⊥µ
−
⊥

γ1σ
eq
⊥
>

1

τrec
,



viii

where the dimensionless function C ′(ω0) is of order 10. It increases with the ex-
ternal frequency ω0 of the AC voltage if the dielectric anisotropy is negative, and
depends otherwise only on scaled material parameters of the SM. Assuming long
recombination times of the order of seconds, this equation explains why travelling
rolls are observed for all external frequencies in thin cells and for liquid crystals with
a relatively low equilibrium conductivity σeq⊥ [of the order of 10−8(Ωm)−1], while they
are observed only for higher frequencies in an intermediate range of σeq⊥ and d. The
precise value and the temperature dependence of the recombination time τrec are
unknown; so no quantitative predictions of the system parameters at the transition
from the Hopf bifurcation to the stationary one (codimension-two point) could be
made. The experimental findings on the nematics MBBA and I52 (see p. 5 or Ref.
2 for the chemical formula for this compound) were consistent with τrec of the order
of 10 s.

In the Hopf regime and not too near to the codimension-two point, the recombi-
nation effects drop out (one can set τrec =∞ in the formulas) enabling a quantitative
experimental test of the predicted oscillation frequency of the travelling rolls (Hopf
frequency). In this case, the Hopf frequency is given by the left-hand side of the pre-
vious equation (see also Eq. (39) in Ref. [1]), i.e., it is proportional to d−3, (σeq⊥ )−1/2,
C ′(ω0), and to (µ+⊥µ

−
⊥)

1/2. Here the geometric mean (µ+⊥µ
−
⊥)

1/2 is the only parameter
that is not contained in the SM.

Quantitative comparisons with experiments are made for MBBA and I52. For
I52, some material parameters of the SM are not known. They were determined by
fitting the prediction of the SM to the experimental results for the threshold voltage
and the roll angle (with respect to the homogeneous alignment) as function of the
AC frequency ω0 at different temperatures. It is possible to use the SM since it
predicts nearly the same threshold and roll angle as the WEM.

Fits to the measured Hopf frequency give values for (µ+⊥µ
−
⊥)

1/2 of the order of
10−10m2/(Vs) in MBBA and I52, consistent with published data. With (µ+⊥µ

−
⊥)

1/2

fitted for each temperature to one data point, the Figures 5.7 - 5.11 (see also Figs. 2a
and 2b in Ref. [2]) show for I52, that the difference between the WEM prediction and
the measured values differed typically by less than 10% for changes of d3 by a factor
of 8 (two different cells), of (σeq⊥ )1/2 by a factor of 2.2 (variation of the temperature),
and of C ′(ω0) by a factor of 2.5 (variation of the external frequency). In MBBA, the
Hopf frequency increases much faster with ω0. In the Figures 5.7 and 5.8 it is shown
that the WEM predicts this increase nearly quantitatively in a range covering more
than a factor of 10. The different behaviour of the two materials is mainly due to
the different dielectric anisotropies: εa ≈ −0.52 for MBBA, εa ≈ −0.056 (30◦C)· · · 0
(60◦C) for I52.

The mechanism of the Hopf bifurcation is found to be similar to that of other
pattern-forming systems showing a Hopf bifurcation: a primary destabilization feed-
back mechanism is coupled to a stabilizing second feedback cycle which is here me-
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diated by the charge-carrier field, with a slow intrinsic time scale (Figure 5.12). In
many aspects, the σ field is reminiscent of the slow concentration field of thermal
convection in binary fluid mixtures.

Chapter 6 is devoted to the weakly-nonlinear analysis of the most important
contributions of the WEM equations. I calculate approximate analytic expressions
of the coefficients of a one-dimensional complex Ginzburg–Landau equation (CGL)
describing the dynamics of the envelope (including of course the actual amplitude) of,
say, the left-travelling waves. The weakly-nonlinear analysis predicts that the Hopf
bifurcation expected for long recombination times τrec is always continuous and that
the nonlinear saturation is stronger than in the SM (smaller amplitude). Decreasing
τrec, the bifurcation becomes stationary and, in general, also (slightly) hysteretic.
For even shorter recombination times, it becomes continuous (Figures 6.4 and 6.5)
and in the limit τrec → 0, the WEM approaches the SM.

This agrees qualitatively with the experiments on I52. It can be concluded that
three different predictions: the amplitude of the nonlinear state after the jump in the
stationary-hysteretic regime, the decrease of the oscillation frequency on increasing
the voltage in the Hopf regime, and the (linear) condition for a Hopf bifurcation,
agree with the experiments assuming a recombination time of 10–20s.

Two experiments with MBBA cells showed a more puzzling behaviour. The lin-
ear dynamics assessed by subcritical fluctuations is oscillatory, but the deterministic
bifurcation seemed to be stationary-hysteretic. I show that the following interpreta-
tion is compatible with the WEM: the Hopf bifurcation is actually continuous, but a
subsequent jump to a nonlinear state takes place at a value of the control parameter
which can not be distinguished experimentally from the threshold value. Recent
experiments on the nematic mixture Merck Phase 5 confirm this interpretation.

The oscillatory behaviour (Hopf bifurcation) in the two MBBA eperiments men-
tioned above was obtained from the correlation function of fluctuations below thresh-
old, which anticipate the linear-deterministic dynamics. The strength of the fluc-
tuations was observed to be (only) 30% to 40% higher than expected from naive
estimates based on the equipartition theorem for thermal fluctuations of the direc-
tor only (without considering charge-density fluctuations). Can this result which
indicates that thermal fluctuations are nearly those of an equilibrium system, be
understood? To give a better understanding of thermal fluctuations in this (and
other hydrodynamic nonequilibrium systems) I apply in Chapter 7 the Landau ap-
proach of fluctuating hydrodynamics to the SM equations. The conclusion is that a
”generalized equipartition theorem can indeed be applied to the director fluctuations
and that charge-density fluctuations indeed contribute in the two experiments only
by, respectively, 3% and 10% [3,4]. Using the WEM would lead to a factor of two
(two critical left- and right travelling modes instead of one stationary mode) that is
cancelled by the correlation time in the denominator of Eq. (7.41), which the WEM
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predicts to be twice as long as in the SM. The correlation time, determined in the
experiments by the correlation function as well, agrees with the WEM, and not the
SM.

A concluding chapter attempts to give some directions for future research. The
coefficients for the CGL were derived in this thesis for the most simple case of
either left- or right-travelling waves. However, one has to consider the interaction
of degenerate critical modes, and, for finite amplitudes, also slowly-relaxing modes
excited by the nonlinearities. Coupled equations for these modes can possibly explain
quantitatively the spatio-temporal chaos (STC) of localized states observed in I52 at
lower temperatures. The CGL predicts also a small region where travelling waves
are unstable to long-wavelength modulations (Benjamin–Feir instability). It would
be fascinating to explain the amplitude-STC of extended states observed in I52 at
higher temperatures, by a CGL in the Benjamin–Feir unstable range. This would
enable a quantitative experimental comparison with the predictions of one of the
most simple and generic equations producing STC.
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Chapter 1

Introduction

1.1 Nonlinear dynamics and pattern formation

I am an old man now and when I will die and go to Heaven I hope

that two things will be understood in the future. One is quantum

electrodynamics and the other turbulent motion. With respect to

the first, I am really rather optimistic.

(Said allegedly by the British Mathematican and
Physicist Sir Horace Lamb, 1932.)

There are three directions in which physics pushes the limits to explore nature: to-

wards the very large and fast, towards the very small, and towards the complex.

With respect to the first two directions, one leaves the familiar space of the inter-

mediate dimensions where our intuition is formed. Relativity and the uncertainty

relation are two of the unexpected and counter-intuitive facts with which nature

provided us.

Starting about thirty years ago, the third direction became more and more im-

portant and gave rise to a new field of physics: nonlinear dynamics, the study of

nonlinear systems and equations. In this case one does not leave the familiar di-

mensions, and the underlying (classical) physical laws are well known. Nevertheless,

also here one is lead to unexpected, often counter-intuitive, and therefore fascinating

phenomena. The central role is played by the inherent nonlinearity of the systems,

so that our basic concept of superposition cannot be applied. The system as a whole

behaves differently from ”the sum of its parts” [1]; qualitatively new phenomena

emerge and its long-term behaviour may become unpredictable, even if the system

is governed by deterministic equations.

This was already known by Poincaré [2] who showed that certain Hamiltonian

systems cannot be separated into modes evolving independently from each other,

1
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as is the case for any linear system. It took more than seventy years before the

meteorologist Lorenz applied these ideas to dissipative systems. He showed that

even a set of three ordinary differential equations, the so-called Lorenz model, can

lead to irregular motion and to a sensitive dependence on the initial conditions. He

coined the word ”butterfly effect” meaning that even the motion of a single butterfly

can influence the global evolution of the weather in the future.

Nowadays this behaviour is referred to as ”deterministic chaos” [3] and, sup-

ported by the increase in computer power, the dynamics of low dimensional nonlin-

ear systems (ordinary differential equations or iterated discrete maps) is fairly well

understood. Typically, the behaviour depends on control parameters which, in the

physical context, are external forces driving the system out of equilibrium. For low

values the long-term behaviour of the system is stationary, described mathematically

by an fixed point. Upon increasing the stress, many systems react with a cascade of

increasingly complex states and eventually the dynamics is chaotic and is described

by a fractal ”strange attractor” [4]. There are at least three generic routes to chaos,

the Ruelle–Takens route involving a few Hopf bifurcations [5], the intermittency route

of Pomeau and Manneville [6] and the Feigenbaum scenario with an infinite cascade

of period doublings [7]. Often it is even possible to reconstruct the attractor, or even

the dynamics of a low-dimensional chaotic system, by measuring a time series of only

one dynamical variable [8].

The next logical step towards complexity consists of the study of spatially ex-

tended nonlinear dissipative systems described by partial differential equations or

high-dimensional discrete models. As in the low-dimensional case, typical systems

are in an ordered (often featureless) state for low external stress. In reaction to an

increasing control parameter, the systems develop spatially and spatio-temporally

ordered structures, and eventually, spatio-temporal chaos or turbulence [9]. While

to date little is known about these two ”Holy Grails” of the field [9] we have an in-

creasing number of analytical and numerical tools to investigate the spatio-temporal

structures appearing spontaneously for an external stress higher than that for the

unstructured state and lower than that for chaos, the domain of pattern formation

[9, 10].

Patterns are ubiquitous in nature. Some examples are water waves driven by wind

[11], cloud formations, sand dunes [12], the ripples appearing in stream beds and on

dirt roads (the infamous ”wash boards”), erosion structures, and snow flakes as well

as other interfacial phenomena. Biological examples are population distributions

[13], stripes and spots on animal coats [9, 14] or the (partially fractal) shape of fern

leaves [15]. Geophysical examples include convection structures of the mantle of
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the earth [16] or of the atmospheres of the large planets [17]. Other examples may

lead to practical applications like modelling the stop-and-go waves of traffic flow on

motorways [18], suppressing the spiral waves occurring in some heart deseases [19],

or controlling chaos in general [8].

1.2 Hydrodynamic systems

For a quantitative understanding of pattern formation, one needs systems where (i)

the basic equations describing the macroscopic dynamics are well established, and

that (ii) allow reproducible precision experiments. The first point is best fulfilled for

hydrodynamic systems. The second point restricts the investigations to rather few

paradigmatic ”standard” systems. It would be also useful to find general aspects not

depending on particular systems. Such universal behaviour is typically found near

the threshold to the first instability, so this range is particularly interesting.

The most prominent system of pattern formation is probably thermal convection

in a simple fluid heated from below, known as Rayleigh–Bénard convection (RBC).

RBC was investigated as early as 1900 [20, 21] and is the isotropic test system for

natural phenomena such as cloud streets and convection phenomena in the mantle of

the earth, but also for the transition to turbulence. For a review see Ref. [9] and the

references therein. While the classic RBC predicts stationary patterns, variations

like thermal convection in binary fluid mixtures [22], or in nematic liquid crystals

[23, 24], show in some parameter ranges a bifurcation to oscillatory patterns (see

also Chapter 5.6).

Another test system showing a rich scenario of patterns is the Taylor-Couette

system where a fluid is confined to a gap between two concentric cylinders which

rotate with different angular velocities [9]. In contrast to the buoyancy force of

RBC, the instability is driven by centrifugal forces. From all systems, it is probably

that system, whose basic equations (Navier–Stokes equations with no-slip boundary

conditions) describe the dynamics most accurately.

The paradigma for anisotropic systems is electrohydrodynamic convection (EHC)

in nematic liquid crystals (NLCs). The main advantages of EHC with respect to

other systems are the convenient time scales in the experiments, many accessible

control parameters, and the large aspect ratio (typically, of the order 1000), that

can be realized experimentally. The main disadvantage of EHC are the complicated

structure of the basic equations, the many (often unknown) material parameters,

and the obviously incomplete standard hydrodynamic description. This last point is

the motivation for most of the work in this thesis.
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1.3 Electrohydrodynamic convection

Nematic liquid crystals

The liquid-crystal state is sometimes called the fourth state of matter [25]. In fact,

liquid crystals posses properties of both crystals and liquids. In nematic liquid crys-

tals (nematics, NLC), considered exclusively in this work, the crystal-like properties

come from the long-range uniaxial orientational order of the rod-like (or disc-like)

molecules. The positional order of the centers of gravity of the molecules is short

ranged which means, that the NLC can flow like a liquid.

I will consider the hydrodynamic description [26, 27, 25] which is based on local

averages visualized by fluid elements. These fluid elements contain many individual

molecules, so local averages can be introduced, but they are small enough to allow

for a continuum treatment on the scale of the entire fluid.

The molecules of the NLC are not aligned perfectly. The degree of alignment is

denoted by the scalar order parameter S [25], and the locally-averaged orientation

by the director field n. Strictly speaking, n is not a vector, but it can be represented

as an unit vector with an additional inversion symmetry (the molecular alignment

does not distinguish right from left). While the order parameter can be assumed

to remain constant for the phenomena studied in this work, the dynamics of the

director field must be incorporated into a hydrodynamic description of a NLC.

The orientational order is associated with an orientational elasticity, i.e., the NLC

responds with a restoring force upon distortions of the director field. In addition,

the orientational order makes the material properties uniaxially anisotropic. The

material properties are described by tensors depending on n which will be given

in Chapter 2. Since the order parameter depends on the temperature (especially

near transition to other phases [25]), the relative anisotropy of the material ten-

sors depends on the temperature as well. For the viscosities and conductivities, an

Arrhenius-like temperature dependence is superimposed [28, 29] that is usually much

stronger and will be important for comparing the proposed model with experiments

(Chapter 5.5).

The NLCs used in the relevant experiments are the standard substance

4-methoxybenzylidene4′-n-butyl-aniline (MBBA), and the newly introduced material

4-ethyl-2-fluoro-4′-[2-(trans-4-pentylcyclohexyl)-ethyl] biphenyl (I52). I52 was found

to be a good material for EHC experiments [30, 31, 32] with some properties com-

plementary to that of MBBA. MBBA is the only room-temperature nematic with

negative dielectric anisotropy where all material parameters have been measured;

in I52, some parameters had to be fitted, see Appendix A.1. In the usual prepa-
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rations of cells MBBA develops a sufficiently high electric conductivity for EHC

[≈ 10−8(Ωm)−1] while I52 must be doped with an ionizable dopant [30].

The experimental system
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The system consists of a nematic liquid crystal with negative or only mildly pos-

itive dielectric anisotropy sandwiched between two glass plates with transparent

electrodes. When applying an AC voltage (typically, V = 10V with a frequency

of 10 · · · 1000 Hz) and increasing the rms V above a certain threshold, the non-

convecting basic state becomes unstable in favour of a periodic state.

Throughout this work, I consider a planar-homogeneous alignment of the director

at the electrodes inducing the anisotropy of the system and defining the x axis, see

Fig. 1.1a. A very detailed description of the experimental setup dealing also with

the intricacies in making cells of I52, is given in the PhD thesis of M. Dennin [31];

see also [30].

Patterns

The driving force for EHC is the electric volume force acting on space charges that

are generated by initial director distortions together with a positive conductivity

anisotropy. This mechanism was suggested by Carr [33] and incorporated into a one-

dimensional model by Helfrich [34]. See the Chapters 5.3 and 5.6 for a discussion.

The first experiments of Williams and Kapustin [35, 36] were interpreted to show

normal rolls, i.e., the roll axis is perpendicular to the equilibrium alignment of the

director. Later on, one observed oblique rolls [37] where the roll axis is tilted with

respect to the y direction (Fig. 1.1a).
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Most notable are travelling rolls which have been observed as early as 1978 [38].

They were found in a broad parameter range in different NLCs (MBBA, Phase 5,

and I52) by different groups [39, 40, 41, 30, 42] and seem to be generic for relatively

thin and clean cells. In most experiments, the bifurcation appears to be continuous

(forward), but in very sensitive experiments, one found a small hysteresis [43, 39].

Finally, EHC is the best (and, until recently, the only) system where thermal

fluctuations could be observed directly [39, 44]. For an overview of some experiments,

see Ref. [40].

Theoretical description

The one-dimensional model of Helfrich was generalized to include AC driving [45], to

two dimensions [46], and finally to a fully three-dimensional treatment [47, 48, 49].

In this work, the standard hydrodynamic description [26, 27, 25] together with the

three-dimensional formulation for EHC is referred to as the Standard Model (SM).

For a review, see, e.g., [50, 24] or, for the older works, the books of Blinov [28] and

Chandrasekhar [51].

The linear analysis in Chapter 5 results in an eigenvalue equation for the growth

rate λ(q, R) = σ(q, R) ± iω(q, R) of periodic perturbations with the wavevector

q = (qx, qy). The growth rate depends on the primary control parameter R ∝ V
2

describing the external driving and on the AC frequency ω0. The real part σ of one

of the eigenvalues crosses zero upon increase of R at fixed q beyond a value R0(q),

while the real parts of the other eigenvalues with the same wavevector q remain

negative. The neutral surface R0(q) is defined, for any q, by the condition that the

most unstable mode has a vanishing growth rate, σ(q, R0) = 0. Minimizing R0(q)

with respect to q gives the threshold Rc = R0(qc) with the critical wavevector qc
and the critical frequency (Hopf frequency) ωc = ω(qc, Rc) of the pattern.

In the SM, ωc is always equal to zero indicating a stationary bifurcation (this

is of course not accidental, but consitutes a generic case in systems with reflection

symmetry). The z and time symmetries of the mode becoming first unstable depends

on ω0. I treat the case of relatively low frequencies, i.e., the so-called conductive range

(solid curve in Fig. 1.1b). The modes for higher frequencies are called dielectric

modes (dashed in Fig. 1.1b).

In the case of a nonzero ωc, two degenerate oscillatory modes with frequency

±ωc become unstable simultanously at threshold, which is the definition for a Hopf

bifurcation (see, e.g., [10]). The two modes can be identified as the left- and right

travelling waves. Even with extreme values of the material parameters and inclusion

of flexoelectric terms one never found a Hopf bifurcation as first instability in the
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SM [52]. This gave rise to develop and explore in this thesis a generalization of the

SM, the Weak Electrolyte Model (WEM).
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Chapter 2

The standard (Helfrich-Carr)

description of electroconvection

The Helfrich-Carr model of electroconvection combines the static [53] and dynamic

[26, 27] macroscopic description of NLCs with the quasi-static Maxwell equations

under the assumption of an ohmic conductivity. Since nearly all past theoretical

investigations are based on this model (see Ref. [50] and the references therein), it

is referred to as the Standard Model (SM).

In this chapter I give the essential steps of the derivation of the SM. The main

purpose is to show the various approximations and to discuss their possible relevance

for a mechanism leading to travelling rolls.

In the first section, I discuss the choice of the macroscopic fields. One has to make

sure that they contain all slow processes involved in the instability mechanism. In

the following section, I give the canonical derivation in the framework of generalized

hydrodynamics [54, 55, 56] (for more details see [57, 58]). Impatient readers may

skip these two sections and go directly to Chapter 2.3 which gives a self-contained

description of the SM in the form used throughout the rest of this work.

2.1 Macroscopic variables

In generalized hydrodynamics, one distinguishes three types of slow fields [55].

• Conserved quantities. They cannot be created or destroyed locally, so their

dynamics is of the form ∂tX + ∇ · JX = 0 where Jx is the current associated

to X. In EHC as in other hydrodynamic systems, the components of the

9
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momentum density gi = ρmvi
1 are such variables. Its currents define the

tensor Tij of the momentum flux, which is equal to the negative stress tensor.

• Broken-symmetry variables. They break a continuous symmetry but are not

conserved, so their dynamical equations are of the form ∂tX + YX = 0 where

YX is sometimes called a ”quasi current” [58]. Since, according to the Noether

theorem, outer symmetries are related to conservation laws, this type of field

can exist only in complex fluids with some inner symmetries. In NLCs without

external fields, the director breaking the local rotational symmetry is such a

field.

• Slowly relaxing variables. In contrast to the first two classes they are not truly

hydrodynamic in that they relax in the homogeneous limit in a finite time.

Nevertheless they cannot be neglected in EHC (and other confined systems), if

their relaxation time is comparable to that of hydrodynamic fields with nonzero

wavenumbers varying at length scales of the order of the distance d between the

two electrodes. The dynamical equation is of the same form as that for broken-

symmetry variables but, in contrast to the former, the static contribution to

the energy density does not vanish in the homogeneous limit. The component

of the director parallel to an electric (or magnetic) field is such a variable.

In both the SM and the WEM, the quasi-static Maxwell equations ∇×E = ∇×H =

0, ∂tρ + ∇ · J̃ = 0 are used, where J̃ = ρv + J and ρ = ∇ ·D (Poisson equation).

This means that there is only one independent slow electric quantity for which the

charge density ρ can be taken. 2 With the normalization condition n2 = 1 and the

further assumption of incompressibility, ∇ ·v = 0, the SM contains five independent

fields, namely the charge density ρ, two director components, and two momentum

densities gi with the equations 3

∂tρ+ ∇ · (ρv + J) = 0, (2.1)

(∂t + v ·∇)ni + Yi = 0, (2.2)

∂tgi + ∂j(givj + Tij) = 0, (2.3)

1In general (e.g. for nonzero magnetic fields), g is not equal to ρmv [59]. Within the quasi-static

approximation for the Maxwell equations, we have always g = ρmv.
2Later on, the potential φ of the induced field inhomogeneity will be used as independent electric

variable.
3Throughout this work, summation over doubly occurring indices is assumed; the notation

∂j = ∂/∂xj , ni,j = ∂jni will be used freely.
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where the convective currents proportional to v are shown explicitly and ρ as well

as the (quasi-) currents J ,Y and T , are yet to be determined.

One has to watch for other slow processes. The mere existence of a slow field

is, of course, not dangerous. To become relevant for EHC, the slow field must be

excited by the SM variables and must couple back. A possible candidate is the order

parameter S which becomes a slowly relaxing field near the clearing point [58]. It

couples to the other fields via the S dependent relative anisotropies of the material

parameters [25] and was suggested as a possible explanation for travelling waves

[52]. The temperature (or internal energy) is slow as well, which is exploited in

RBC of NLCs [60]. With planar boundary conditions (BC), the director enhances

the buoyancy mechanism of isotropic RBC by a factor of the order of τd/τtherm ≈
1000 (!) via heat focussing caused by the anisotropic thermal conductivity [61,

24]. Without an external temperature gradient, temperature inhomogenities are

produced only in nonlinear order by the dissipative heat production R (Chapter 2.2).

A simple order-of-magnitude estimation shows, that this contribution is negligible

even in weakly-nonlinear calcuations [62]. With an external electric field, however,

generalized hydrodynamics allows for a linear mechanism driven by thermoelectric

effects [an electric field drives a thermal current and a temperature gradient drives

an electric current, see Eq. (2.16) below], which may become important for thick

cells.

Even the classic Maxwell equations have some subtleties if applied to polarizable

media [59]. Only rather recently, the treatment of the fields D and B on equal

footing as the other hydrodynamical variables has been carried through [63] leading

in NLCs to new ”dissipative” parts of the electromagnetic fields [57], which are

not a priori small. Furthermore, such fields can induce a coupling between, e.g., a

velocity gradient and the electric current, which clearly is relevant for EHC. There

exist, however, no measurements of the material parametes involved, or even an

experimental evidence of these effects; they are just allowed by symmetries. This

concept will not be pursued in this work.

Finally, in this framework, the WEM is based on the assumption that the local

conductivity becomes slowly relaxing. It is excited by charge-carrier migration effects

and couples back to the other equations via the change of the conductivity in the

charge conservation.
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2.2 Derivation of the Standard Model

The framework set by Eqations (2.1) to (2.3) is valid for many systems. Now we

specify them to NLCs by determining ρ and the (quasi) currents J ,Y and T . The

functional dependence on the NLC material parameters is completely determined by

symmetries [55, 58] and its derivation will be sketched in the following.

2.2.1 Statics

The thermodynamical potential suitable for equilibrium at a given temperature and

for a given electric field is the free electric enthalpy G =
∫

d3r {ε− Ts−E ·D}
where ε and s are the densities of the energy and the entropy, respectively.4 Near

equilibrium, G is a quadratic form of the thermodynamic variables n, ρmv, and

E. Furthermore, it is extensive, G =
∫

d3rg, and the scalar density g is invariant

under rotations. Since n is a symmetry variable without an electric field, the elastic

contribution of G depends only on gradients of n. Respecting the uniaxiality of the

state, the n ↔ −n symmetry and the inversion symmetry in space and time, and

restricting to the lowest-order expansion in the gradients, one obtains

G =
∫

d3r
{

1

2
ρmv

2 +
1

2
Kijklni,jnk,l −

1

2
εijEiEj − eijkni,jEk

}

(2.4)

with

Kijklni,jnk,l = K11(∇ · n)2 +K22[n× (∇× n)]2 +K33[n · (∇× n)]2, (2.5)

εij = ε⊥δij + εaninj, (2.6)

eijk = e1δijnk + e3δiknj. (2.7)

Comparing Equation (2.4) with the general form of the free electric enthalpy gives

the constitutive equation for D (and thus for ρ) and defines the ”molecular field” h

[25] as the thermodynamic conjugate of n,

Di = − δG

δEi

= εijEj + ejkinj,k := εijEj + P flexo
i , (2.8)

hi =
δG

δni
=

∂g

∂ni
− ∂j

(

∂g

∂ni,j

)

. (2.9)

The term (2.5) is the orientational-elastic Frank energy [53] due to splay (K11), twist

(K22), and bend (K33) deformations of the director; ε is the uniaxial tensor of the

4In the Chapters 5-7, the control parameter is denoted by ε as well. A confusion should not

arise.
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dielectric permittivity, and eijk describes the flexoelectric effect. The flexoelectric

polarization P flexo leads to an additional charge density ∇ ·P flexo in Eq. (2.1)) that

is not a priori small. In fact, the flexoeffect has been investigated rather extensively

as a possible candidate to explain the travelling waves [64, 49, 65]. It cancels out,

however, for AC driving in the ”lowest order time expansion” (Chapter 5.2) which

will be considered exclusively in this thesis. In addition, the flexoelectric coefficients

are hard to measure [66].

2.2.2 Dynamics

The suitable potential to derive the dynamics is the energy

dE =
∫

d3r
{

Tδs+ φ̃δρ+ hδn+ viδgi
}

:=
∫

d3rε, (2.10)

since its natural variables are those of the conservation laws and balance equations

(2.1) - (2.3).

The central relation is the entropy balance

∂ts+ ∇ · (sv + J s) =
R

T
, (2.11)

were the dissipation function R is the local heat production per volume from dissi-

pative processes. With Eq. (2.10), ∂ts can be substituted by T−1(∂tε− v · ρm∂tv −
h · ∂tn − φ̃∂tρ). After eliminating the time derivatives with the energy balance

∂tε+∇(εv+J ε) = 0 and with the Eqs (2.1) - (2.3), we arrive (with the constitutive

equation gi = ρmvi) at

R = T∇(sv + J s)−∇(εv + J ε) + φ̃∇(ρv + J)

+ h(v.∇n+ Y ) + vi(ρmvj∂jvi + ∂jTij). (2.12)

The (quasi-) currents 5 on the right-hand side of Eq. (2.12) can be separated into

independent dissipative parts (the superscript D will be used) and reversible parts,

and the latter can be separated into transport parts shown explicitly in (2.12) and

parts existing also in the frame of reference comoving with the local velocity [dashed

in Eq. (2.21) below]. Now I determine the three parts separately.

Dissipative parts

The dissipative currents make up the entropy production. Near or in local equilib-

rium, the entropy production is a quadratic form of the generalized forces driving

5Henceforth, I will not distinguish explicitly betwee currents and quasi-currents



14 basic equations

the system out of (global) equilibrium. In equilibrium, the conjugates of conserved

variables are constant and that of symmetry breaking or slowly relaxing variables

are zero, so near local equilibrium, the Onsager forces of the conserved variables ρ,

gi = ρmvi, and s are the gradients of the conjugate fields, −∇φ̃, −∂ivj and −∇T ,

and the force of the director is the conjugate h itself. If one writes the forces as

Fα := (Ei, hi,−∂ivj,−∂iT ), (2.13)

the dissipation function (the entropy production multiplied by T ) takes the form

R = FαMαβFβ := FαJα (2.14)

which defines the Onsager fluxes Jα. The matrix Mαβ has to fulfil the Onsager

relations [67, 68, 69]

Mαβ = tαtβMβα, (2.15)

where tα = 1 (−1) for forces of variables that are symmetric (antisymmetric) under

time reversal. The signs (and possible prefactors) of Fα are defined such that the

Onsager fluxes Jα are just the curents J ,Y , Tij and J therm as will be shown below.

Applying the symmetry restrictions and Eq. (2.15), we obtain analogously to Eq.

(2.4) in lowest order

R = 1
2
σijEiEj +

1
2γ1
hiδ

⊥
ijhj +

1
2
ηij,klvi,jvk,l

+1
2
κij(∂iT )(∂jT ) + κelijEi∂jT.

(2.16)

The first term with the usual uniaxial form for the conductivity tensor σij = σ⊥δij +

σaninj is due to ohmic heating. The second term with the rotational viscosity γ1
describes the rotational friction of the director relative to the moving fluid. To satisfy

n2 = 1, the variational derivative in the definition of the molecular field must be

restricted to variations perpendicular to the director itself. This means h ⊥ n and

is guaranteed by applying to h the tensor δ⊥ij = δij − ninj projecting onto the plane

perpendicular to the director. The third term with three viscosities (see below)

describes the viscous heating. The two temperature-gradient terms are neglected,

although, for a nonzero external electric field, the thermoelectric coupling ∝ κelij
induces a thermal current in linear order (Chapter 2.1). 6

6Sometimes, a further term ẽijkhi∂jEk describing the dynamic analog of the flexoelectric effect,

is introduced [58]. It is of higher order if there are no field gradients in the basic state; the

corresponding material parameter has not been measured.
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The dissipative currents are determined by rearranging Eq. (2.12) without the

convective terms in a gradient and a sum of Onsager forces multiplied by fluxes,

R = ∂j

(

TJDsj + φ̃JDj + viT
D
ij −

∂ε

∂ni,j
Yi − JDεj

)

+ JD ·E.+ h · Y D − TD
ij ∂jvi − JD

s ·∇T, (2.17)

and comparing the result with Eq. (2.16). The gradient parts are balanced by J ε,

and the dissipative currents are (in the approximations of the SM)

JDi =
∂R

∂Ei

= σijEj, (2.18)

Y D
i =

∂R

∂hi
= γ−11 δ⊥ijhj, (2.19)

−TD
ij =

∂R

∂vi,j
= ηijklvk,l = α4Aij + (α1 + γ1λ

2)ninjnknlAkl

+ (α5 −
γ1λ(1 + λ)

2
)(niAjknk + njAiknk), (2.20)

where Aij = (∂ivj + ∂jvi)/2. As a result of the symmetry restrictions, one gets in

Eq. (2.20) three general shear-viscosity coefficients. They have been expressed in

terms of the more familiar Erickson-Leslie coefficients α1, α4 and α5 [26, 27], and by

γ1 and a reversible parameter λ to be defined below.

Reversible parts for zero transport

The Onsager symmetries (2.15) are valid also for the reactive Onsager fluxes J ′
α =

M ′
αβFβ, but now, of course, the heat production Eq. (2.14) has to vanish. This

implies that the reactive Onsager matrix M ′
αβ has no diagonal terms and only those

cross terms that couple variables with opposite time-reversal symmetry. This leads

to J ′
s = J ′ = 0, and to

(

Y ′
i

T ′
ij

)

=

(

0 1
2
λijk

−1
2
λkji 0

)(

hk
−∂jvk

)

. (2.21)

The symmetries lead to λijk = λ1δ
⊥
ijnk + λ2δ

⊥
iknj and the condition of vanishing

relative motion of the director in the case of a rigidly rotating fluid, ∂tn = ω×n for

∂ivj = ∂jvi and ∇× v = 2ω, leads to λ2 − λ1 = 2.7 Thus λ can be written as

λijk = (λ− 1)δ⊥ijnk + (λ+ 1)δ⊥iknj. (2.22)

7A more formal derivation using conservation of the angular momentum can be found in [58].



16 Standard Model

Often, the sum of the reactive and dissipative parts of the momentum-flux tensor is

expressed in terms of the Erickson-Leslie coefficients α1, ..., α6 [26, 27], given in Eq.

(2.28) below. Although this formulation is less systematic, it will be used throughout

this thesis, mainly to enable an easy comparison with existing work. An intuitive

picture of the various viscosities is given e.g. in [70, 31].

Transport parts

The transport or convective currents are related to Galilean invariance and therefore

reversible as well. The condition that the dissipation function of the convective

currents, Eq. (2.12) with J s = J = Y = 0, vanishes for any v, can only be satisfied

by an extra part T t
ij of the momentum-flux tensor. The momentum-flux tensor

(including the isotropic pressure) is the only non-convective current which gives

contributions ∝ v in (2.12) and thus can balance all other advective contributions.

This leads to

T t
ij = pδij + πij − EiDj, πij =

∂ε

∂nk,j
nk,i, (2.23)

where the pressure is given by the Gibbs relation [71, 59] p = −ε+ Ts+ ρmv
2 + ρφ̃,

and some transport parts were expressed by ∂ip = Dj∂iEj−hj∂inj+ρmvj∂ivj+s∂iT .
The pressure will be eliminated later. The second term in Eq. (2.23), the Erickson

stress [25], is the (nonlinear) counter term of the director advection term v ·∇n.
In physical terms, velocity gradients change the elastic energy by changing the local

director distortions which must be balanced by the mechanical power (i.e. velocity

times a force) vi∂jπij. The third term EiDj := −T el
ij is the balance to the charge

advection. Its gradient, the electric volume force, is the main driving force of EHC.

By redefining the pressure as p̃ = p − 1
2
ε0ε⊥E

2, the volume force can be written

as −∂jT el
ij = ρEi + Pj∂jEi, where the ”polarization” Pi = εaninjEj contains the

inhomogeneity of the dielectric displacements. The polarization part is nonlinear

and will be neglected in the following.

2.3 Basic equations

In summary, the equations of the SM are

(∂t + v ·∇)ρ = −∇ · (σE), (2.24)

(∂t + v ·∇)n = ω × n+ δ⊥(λAn− 1

γ1
h), (2.25)

ρm(∂t + v ·∇)vi = −∂ip− ∂j(πij + T visc
ij ) + ρEi, (2.26)
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with the static conditions ρ = ∂iεijEj (Poisson equation), Ei = E0(t)δi3−∂iφ (exploit-

ing ∇×E = 0 and separating E into an external field and a field inhomogeneity),

n2 = 1 (constant order parameter), and ∇ · v = 0 (incompressibility).

Eq. (2.24) is just the charge balance for a weak anisotropic ohmic conductor

where both the charge density and the current are relevant. Without forces, the

director in Eq. (2.25) would move with the surrounding fluid like a rod in a river,

N ≡ (∂t + v ·∇)n − ω × n = 0, where ω = (∇ × v)/2 is the local fluid rotation.

The forces onto the director in Eq. (2.25) come from the orientational elasticity

described by the molecular field h, and from a coupling of the director to the fluid

shear Aij = (∂ivj+∂jvi)/2 (”flow alignment”). The projection tensor δ⊥ij = δij−ninj
guarantees n2 = 1. The molecular field is given by

hi =
δ

δni
(Kmnklnm,nnk,l)− εa(n ·E)Ei, (2.27)

with Kijklni,jnk,l from Eq. (2.5). Sometimes, Eq. (2.25) is written as

n × (h + γ1N + γ2An) = 0 with γ2 = −λγ1 [72, 25, 73]. Both forms of the

director equation can be expressed in terms of the Erickson-Leslie coefficients with

the relations γ1 = α3 − α2 and λ = (α2 + α3)/(α2 − α3) obtained with the help of

angular momentum conservation.

The negative viscous stress tensor (momentum-flux tensor) T visc
ij has a reactive

part T ′
ij and a dissipative part TD

ij given by the Eqs. (2.21) and (2.20), respectively.

Often, the molecular field in T ′
ij is expressed with the help of Eq. (2.25) in terms of

N and An and the two parts are written together in terms of the Leslie coefficients,

−T visc
ij = α1ninjnknlAkl + α2njNi + α3niNj

+α4Aij + α5njnkAki + α6ninkAkj. (2.28)

In this formulation, the Onsager symmetries have to be condidered separately leading

to the so-called Parodi relation [74] α2+α3 = α6−α5. At last, the nonlinear Erickson
stress πij in Eq. (2.26) is given by Eq. (2.23). In the Eqs. (2.24)–(2.26), some small

contributions have been neglected, e.g., the flexoeffect and the polarization part of

the electric volume force (Chapter 2.2.2).

Equations (2.24) to (2.26) represent five independent equations for the potential

φ of the electric field inhomogeneity, two director components (ny and nz for the

planar geometry), and two velocity fields or a suitable representation for them, e.g.

the toroidal and a poloidal potential g and f for divergence-free fluids[75]

v = ∇× ẑg + ∇× (∇× ẑf) ≡ εg + δf, (2.29)

ε = (∂y,−∂x, 0), δ = (∂2xy, ∂
2
yz,−∂2xx − ∂2yy). (2.30)
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class of
response

effect given by
in EHC leading
to

static

orientational
elasticity

Kijkl = (2.5)
K11

K22

K33

restoring torque
from director
distortions

dielectric
permittivity

εij =
ε⊥δij + εaninj

ε⊥
εa

dielectric torque

dynamic,
reactive

flow alignment λijk =(2.22) λ †
torque onto the
director due to
fluid shear

rotational
viscosity

γ1
†

torque onto the
director due to
relative rotation

dynamic,
dissipative

shear viscosity ηijkl = (2.20)

α1
α4
α5

Damping of
the fluid
motion

conductivity
σij =
σ⊥δij + σaninj

σ⊥
σa

charge focussing;
electric volume
force

† λ = (α2 + α3)/(α2 − α3), γ1 = α3 − α2

To eliminate the pressure, one takes the y and z components of the curl of (2.26)

[48] or applies the Hermitean conjugate of the operators δ and ε [76, 77, 62].

The planar-homogeneous ”rigid” BC, used exclusively in this work, are

φ(z = ±d/2) = 0 (ideally conducting plates),

n(z = ±d/2) = (1, 0, 0) (rigid anchoring), (2.31)

v(z = ±d/2) = 0 (finite viscosity).

In the horizontal x and y directions, I assume the system to be infinite (translationally

invariant). To avoid destruction of the NLC by electrolytic effects, the cell is driven

with an AC voltage,

E0(t) =
V
√
2

d
cosω0t, (2.32)

which conveniently introduces the external frequency as a second control parameter

(typically, ω0/2π = 10...1000 Hz). The instability mechanism, however, is active also

for DC.

In the table, the material parameters of the NLC are summarized that are con-

tained in the SM.



Chapter 3

The Weak Electrolyte Model

I know that I know nearly nothing, and hardly this.

K. R. Popper

Many features of EHC in the conductive range of low frequencies are quantita-

tively described by the SM, in particular the threshold voltage as function of the

external frequency, and the existence and angle of oblique rolls. Nevertheless, even

qualitative features remain unexplained. Most notable are travelling rolls which have

been observed as early as 1978 [38]. Later on, they were found in a broad parame-

ter range in different liquid crystals (MBBA, Phase 5 and I52) by different groups

[42, 39, 40, 41, 30], and seem to be generic for relatively thin and clean cells. Despite

this, they have withstood a theoretical understanding until recently.

3.1 Physical assumptions

A theory of travelling rolls in EHC must explain the following facts.

• The travelling rolls are really produced by a Hopf bifurcation that breaks spon-

taneously the reflection symmetry. This is shown by spatiotemporal correla-

tions of subcritical director fluctuations which are left-right symmetric [39].

This is confirmed by experiments where the control parameter (rms voltage)

is modulated in time and, for a modulation with the double Hopf frequency,

parametric resonance leads to standing waves as predicted by theory for a

Hopf bifurcation [40]. This means that the travelling rolls really originate from

a Hopf bifurcation to degenerate right and left travelling rolls. Drift effects due

to broken left-right symmetry (e.g., nonideal planar boundary conditions with

a pretilt [52, 76]) are excluded.

19



20 WEM

• Travelling rolls are only found in thin cells, e.g., in MBBA in cells with d =

13µm [39], but not in cells with d ≥ 20µm [41, 43], and in I52 for d = 28µm,

but not for d = 57µm [30, 42].

• For a fixed cell thickness, travelling rolls are observed for conductivities below a

certain threshold [30]. From experiments, it was suggested [31], that deviations

from the SM scale with (σ⊥d
2)−1 and, in particular, that for a given material

the codimension-two curve separating stationary from travelling rolls is given

by σ⊥d
2 = const.

• For a stongly negative dielectric anisotropy (MBBA with εa = −0.53 or Phase

5 with εa of the order of −0.2) one observes travelling rolls only in a certain

frequency range ω0,min < ω0 < ωcutoff (e.g. between 350 and 420 Hz in [40]),

or, the Hopf frequency becomes very low for low frequencies [41, 78]. For

I52 at low temperatures (slightly negative εa) there are travelling rolls with a

significantly nonzero Hopf frequency for all frequencies and the Hopf frequency

increases with the external frequency. At high temperatures (εa essentially

zero) the Hopf curve of I52 is essentially flat [30, 42].

• Furthermore, there is an excellent quantitative agreement between the SM and

experiments for thermal convection in NLCs [23, 79, 24], so any new model

must reduce to the SM for zero electric fields, and for large values of σ⊥ and

d2.

In the SM, the static and dynamic electric properties of the NLC are described by

D = εE and J = σE, respectively. Obviously, a new model must generalize either

of these two relations.

The static relation has been generalized to include flexoelectric effects (see Chap-

ter 2.2), D = εE + Pflexo [49, 65]. The rationale was that the flexoelectric terms

break the combined symmetry z → −z, t → t + π/ω0 and that the resulting cou-

pling of two linear modes, namely the conductive IA and dielectric IIB modes (see

Chapter 5.2) may lead to oscillations at threshold [52]. However, this can be the case

only for external frequencies where both modes get unstable nearly simultaneously

(crossover), i.e. only near the cutoff frequency. In addition, there are other problems

with the flexoeffect that are described in Chapter 2.2. Anyway, evaluating the SM

including the flexoeffect has not led to travelling rolls.

A generalization of J = σE, i.e., a non-ohmic conductivity, was suggested already

in the Refs. [48, 52] and will be the basis of the development of the WEM. The intrin-

sic conductivity of thermotropic NLCs is extremely low (for I52 less than 10−9(Ωm)−1



Physical assumptions 21

[31]; To obtain a sufficient and well-controlled conductivity, one adds often an

ionizable dopant to the NLC. For MBBA with the dopant Tetrabutyl-Ammonium

Tetraphenyl-Boride (TBATPB), the conductivity increases with the square root of

the TBATPB concentration [80]; with a molar concentration of 10−5 moles per liter

one obtains a conductivity of 1.5×10−7(Ωm)−1. For I52, it proved to be very difficult

to find a dopant providing enough conductivity for EHC, probably because I52 con-

sists of nonpolar molecules, in contrast to MBBA. At last (after 17 tries with other

dopants) a concentration of 2% (!) Iodine (I2) was successful in the experiments of

Mike Dennin [31].

For MBBA with the dopant TBATPB, the measured dependence of the equi-

librium conductivity from the square root of the TBATPB concentration can be

naturally explained by a simple dissociation-recombination reaction. Ref [80] sug-

gests the reaction

(C4H9)4 N(C6H5)4B⇀↽ (C4H9)4 N+ + (C6H4)4B
−,

which has the generic form [80]

AB⇀↽ A+ + B−.

In equilibrium, the product of the number densities n+ and n− of the ions A+ and

B− is proportional to the density nAB of the undissociated molecules, n+n−/nAB =

const. := K (mass-action law). The conductivity is caused by the drift of the dis-

sociated ions, is proportional to the sum of n+, n−, weighted with the mobilities.

With typical values for the mobilities (see Table 3.1) one finds that only a small

fraction of the impurities is dissociated into ionic charge carriers (weak-electrolyte

limit) and one obtains from the mass-action law the observed square-root behaviour.

In the I2 doped I 52, the molecules form a charge-transfer complex and then undergo

a dissociation-recombination reaction [31]. Although this is a multistep process, the

net effect should be described by the above simple binary reaction.

In any case, the current should be described as in the SM (Ohm’s law with

anisotropic conductivities) for homogeneous stationary systems, or, approximatively,

for thick cells. This motivates following assumptions for the WEM.

• The electric current is caused by two species of ionic charge carriers A+ and

B− with charges ±e 1 and number densities n+ and n−. The electric current

J± of each species is caused by advection with the fluid velocity, migration

1Charges of ±ne can be taken care of by renormalizing the mobility by a factor of 1/n.
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(drift) by electric fields E, and diffusion due to carrier-density gradients [81],

J = J+ + J− = e(n+ − n−)v + e
(

µ+n+ + µ−n−
)

E

− e
(

D+
∇n+ −D−

∇n−
)

. (3.1)

• The charge carriers originate from dissociation of impurity ions and can be

described by the net reaction AB ⇀↽ A+ + B− with the dissociation rate
.
ndiss= kdnAB and the recombination rate

.
nrec= krn

+n−. In addition, over-

all neutrality,
∫

d3r(n+ − n−) = 0, is assumed.

• The mobilities (and diffusivities) are uniaxial tensors whose principal values µ±
⊥

and µ±‖ (D±
⊥ and D±

‖ ) do not depend on E, n+ or n−. I assume equal relative

anisotropies [80, 28], which must be given by the measured relative anisotropy

of the conductivities to be consistent with the SM limit,

µ+ij = µ+⊥µ
′
ij, µ−ij = µ−⊥µ

′
ij with µ′ij = δij +

σeqa
σeq⊥

ninj. (3.2)

• The number density of dissociated ions is much lower than the density of the

remaining undissociated impurities (weak-electrolyte limit),

nAB >> n+, n−. (3.3)

Introducing the dissociation constantK = kd/kr, the equilibrium charge carrier

density of the neutral NLC, n0 := n+eq = n−eq =
√

neqABK, the total concentration

of the dopant, c = nAB + (n+ + n−)/2 (a conserved quantity), and the degree

of ionization in equilibrium, βc = n0/c [28], we have in equilibrium (E0 = 0),

but not restricted to weak electrolytes

βc =
K

2c

(
√

1 + 4
c

K
− 1

)

. (3.4)

The weak-electrolyte limit is given by βc ≈
√

K/c << 1, i.e. K << c which is

well satisfied for I52, see Table 3.1. The generalized condition (3.3) for E 6= 0

requires knowledge of the solutions of the WEM equations, i.e. can be verified

only a posteriori.

3.2 Formulation of the WEM

3.2.1 Dynamical equations for the charge- carrier densities

The hydrodynamic part of the equations for the carrier densities (without dissocia-

tion and recombination) can be formulated in the framework of generalized hydro-
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dynamics. The electric part φ̃dρ of the SM energy density (2.10) becomes

dεel = φ̃e(dn+ − dn−) + kBTd(n
+ lnn+ + n− lnn−), (3.5)

where the second term equals T times the additional entropy from the two (non-

interacting) carrier densities. Without dissociation and recombination, the fields n±

are true hydrodynamic variables obeying the continuity eqations ∂tn
± +∇ · (n±v +

Jn±) = 0, where the currents are linear combinations of the thermodynamic forces,

F± = −∇

(

∂ε

∂n±

)

= ±eE − kBT∇ lnn±. (3.6)

Cross couplings between, e.g., Jn+ and F− are not forbidden, but it seems reasonable

to neglect them, putting Jn± = M±F±. The Onsager matrices M± are determined

by the condition that the ohmic SM conductivity should be recovered in the homo-

geneous limit and by the assumption of constant mobilities (Jn± ∝ n±). This leads

to M± = 1
e
µ±n± or

Jn± = ±µ±
(

n±E − kBT

e
∇n±

)

(3.7)

Comparison of (3.7) with (3.1) gives a relation of the diffusivities with the mobilities,

the anisotropic form of the Einstein law [28],

D± = VTµ
±, VT =

kBT

e
≈ 26mV, (3.8)

where VT is the thermal voltage. The (non-hydrodynamic) dissociation and recom-

bination parts are given in a homogeneous (stirred) system by the usual kinetic

equations ∂tn
± = kdnAB − krn

+n−. The weak-electrolyte assumption implies that

nAB ≈ neqAB = const, or kdnAB − krn
+n− ≈ kr(n

2
0 − n+n−).

Combining the hydrodynamic and the non-hydrodynamic parts and substituting

Eq. (3.7) for the currents give the dynamical equations for the carrier densities,

∂tn
± + ∇ ·

[

vn± + µ±⊥µ
′(±E − VT∇)n±

]

= kr(n
2
0 − n+n−). (3.9)

Note that, using ∇·v = 0, the left-hand side of (3.9) can be written in the ”advective”

form

(∂t + v
± ·∇)n± +µ±⊥

(

±n±∇(µ′E)− VT (∇n±)(∇µ′)
)

where v± = v + µ±⊥µ
′(±E −

VT∇) are the total velocities of the carriers.

In view of coupling Eqs.(3.9) to the director and momentum-balance equations

of the SM, it is convenient to write the equation as a continuity equation for the
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charge density ρ(r, t) = e(n+−n−) and a balance equation for the local conductivity

σ⊥(r, t) = e(µ+⊥n
+ + µ−⊥n

−),

∂tρ + ∇ ·
[

ρv + µ′Eσ⊥ − VTµ
′
∇ (d1σ⊥ + 2µs1ρ)

]

= 0, (3.10)

∂tσ⊥ + ∇ ·
[

σ⊥v + µµ′E(d1σ⊥ + µs1ρ)− µVTµ
′
∇ (s2σ⊥ + d1µs1ρ)

]

= krn0σ
eq
⊥

[

1− (σ⊥ + µ−⊥ρ)(σ⊥ − µ+⊥ρ)

(σeq⊥ )2

]

, (3.11)

where we introduced the effective mobility µ = µ+⊥+µ
−
⊥, the equilibrium conductivity

σeq⊥ = µen0 and the mobility ratio γ = µ−
⊥/µ

+
⊥ together with d1 = (1 − γ)/(1 + γ),

s1 = γ/(1 + γ)2, and s2 = (1 + γ2)/(1 + γ)2. Note that the terms ∝ s1, s2(∝ d1)

are (anti-) symmetric with respect to a change n+ ↔ n− corresponding to γ → 1/γ.√
s1 is the ratio of the geometric mean to the sum of the mobilities.

3.2.2 Boundary conditions

In the structureless state with no variations in x and y, we have ρ = ε⊥∂zEz, and

Eqs. (3.10) and (3.11) represent, with respect to the z derivatives, a third-order

equation for Ez and a second-order equation for σ⊥. Thus we need at the confining

plates five BCs for the electrical variables in addition to the usual fully-rigid planar

SM-BCs n = (1, 0, 0) and v = 0 (z = ±d/2). The integral condition

∫ d/2

−d/2
dz Ez = V (t) (3.12)

is always valid. the remaining four electrical BC are relations between current,

electric field and density for each species at the electrodes which can depend in

a complicated way on electrochemical processes and may be parametrised e.g., for

z = d/2 as

J±
z = σ±surfaceEz −D±

surface(n
±
ext − n±), (3.13)

where J+ = eJ+
n (J− = −eJ−

n ) are the electric currents carried by the positive

(negative) carriers. Some special cases are

• Strongly injecting electrodes where σsurface is very large at one or at both elec-

trodes leading to Ez = 0 (”space-charge limiting conditions”). In the isotropic-

unipolar case, such BCs are adopted, e.g., in the Refs. [81, 82].

• Electrodes absorbing outflowing carriers, σ±
surface = eµ±⊥n

± for E · ê > 0, and

σsurface = 0 for E · ê < 0 (ê is the outwards-pointing normal vector). This kind

of electrodes is used for electrodyalitic purification [83].
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Figure 3.1 Effects of adsorbed surface
charges on the electric field and the vol-
ume charges under the assumption of an
otherwise trivial basic state (discussed in
Chapter 4. (a): Charges adsorbed at the
right (top) plate; (b): Charges adsorbed
at the left (bottom) plate. For illustrative
purposes, the δ-distributed surface charge
is drawn as a layer of finite thickness.

• The BCs of the SM. For zero diffusivities, the five electric BC lead to an

overdetermined system. This fixes the BC to the ”ohmic BC” σ±
surface = eµ±⊥n

±

or Jz = σ⊥Ez.

• Blocking electrodes. No transfer of any charge through the electrodes [84, 85,

86],

J+z (z = ±d/2) = J−
z (z = ±d/2) = 0. (3.14)

These last BCs do not involve unknown electrochemical processes and will be as-

sumed in the rest of this paper. They are also relevant for the I52 experiments

(insulating SI O2 - layer at the electrodes [30]) and it is known that, for AC driving,

blocking electrodes do not influence EHC [87]. These BC imply that the total charge
∫

cell d
3rρ :=

∫

dx dyQ is a conserved quantity. Usually, overall neutrality (Q = 0) is

assumed, but the electrodes may contain as well permanently adsorbed charges [86].

This can be incorporated into the WEM by setting

Ez(d/2)− Ez(−d/2) = −
Qad

ε0ε⊥
, (3.15)

where Qad is the average adsorbed total charge per area and Ez is the field just inside

the layers. Remarkably, Eq. (3.15) is the same whether the charges are adsorbed

at the top or bottom plates or on both, see Fig. 3.1. Like the flexoeffect, adsorbed

charges break the z symmetry of the system, but leave the combined symmetry

z → −z, t → t + π/ω0 intact. Adsorbed charge layers increase the Fre’edericksz

threshold in a simple model [86]. Their effect on EHC has not been investigated.
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Table 3.1: Material parameters related to conduction

parameter material value and source

total mobility µ ## MBBA ++ 3.71 [80];
MBBA 0.18 [83]; 1..10 [87]; 10 [81]; 1 [28]
5CB 0.6 [84]; 2.5 [86]
theory 11 (Stokes friction) [80]
for MBBA 0.2 (dielectric friction) [87]

geometric mean
√

µ+⊥µ
−
⊥ I52 0.40 ... 0.47 (Hopf frequency) [42]

assumed MBBA# 1 [80]
mobility ratio γ 5CB >> 1 [84]

mobility anisotropy µa
µ⊥

MBBA 0.33 [80]; 0.5 [88]

dissociation MBBA# 3.4× 1021m−3 [80]
constant K = kd

kr
MBBA †† (2..4)× 1020m−3 [28]

recombination- MBBA † 1.5× 10−27m3s−1 [83]
rate
constant kr

dielectric
liquids 10−15m3s−1 [81]

carrier lifetime MBBA † 2.7× 104 s [83]
τrec = (2krn0)

−1 MBBA 10−3s [81]
5CB 0.05 s [86]

equilibrium MBBA 6× 1020m−3 [28]
density n0 5CB 1020m−3 [84]; 8× 1020m−3 [85]

degree of ionization MBBA ∗, # 0.001
βc =

n0
c
, Eq. (3.4) I52 ,+ 0.2

diffusion constant D 5CB 4.5× 10−13m2s−1 [84]

## In units of 10−10m2/(Vs); # dopant TBATPB;
†† dopants TBAP and TBAB; ++ does not depend on the TBATPB
concentration;
† electrodialysed to σ = 5× 10−9(Ωm)−1, 50 ◦C(3K above the clearing point);
∗∗ dopant 2% I2;

∗ For σ⊥ = 10−7(Ωm)−1, µ⊥ = 3.71× 10−10m2/(Vs);
+ T=40C, σ⊥ = 0.49× 10−8(Ωm)−1
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3.2.3 Material parameters related to conductivity

In addition to the SM material parameters (see e.g. Ref. [48] for MBBA), the Eqs.

(3.10) and (3.11) contain the WEM parameters µ+⊥, µ
−
⊥, and krn0. As will be shown

later, only the products µ+⊥µ
−
⊥ and krn0 are relevant, in most cases.

The dissociation constant K and the total mobility µ = µ+⊥ + µ−⊥ (and thus n0)

were measured in MBBA doped with TBATPB [80] by fitting the experimentally

obtained conductivity vs. concentration curve to the expression obtained from (3.4),

σeq⊥ (c) = eµn0 = eµβcc =
eµK

2

(
√

1 + 4
c

K
− 1

)

. (3.16)

The quantities µ, kDnAB ≈ kdc and kr were determined by measuring the stationary

current and the current response to various voltage signals in electrodialytic cells

with charge-absorbing BC [83]. Another group used the current response in cells

with blocking BC to measure µ, n0 and indirectly the diffusion constant D via the

thickness of the diffusive boundary layers [84, 85, 86] which are assumed to decay

exponentially with the Debye length λD, see Table 3.2. The resulting diffusivity

is smaller by a factor of three than that obtained with the Einstein relation. As

discussed in Chapter 4, the thickness of the diffusive boundary layers can be obtained

also by measuring the capacitance as a function of the external frequency [31].

There exist also theoretical estimates for the mobility. In the simplest case one

assumes that the dissipation leading to a finite mobility is caused by Stokes’s friction

of a sphere with the effective ion radius (of the order of 5 Å). For NLCs, the resulting

mobilities are two to three orders of magnitude too high [80]. The correct order of

magnitude is obtained [87] by assuming additional dissipation from the lag of the

polarization cloud in the surrounding solvent [89]. This theory of ”dielectric friction”,

however, predicts an isotropic mobility depending on microscopic parameters like the

ion radius and the Debye relaxation time (≈ 10−6 s in NLCs [29]) which causes the

lag, It is applicable only to polar solvents (MBBA, not I52). Finally, the WEM

relates the geometric mean
√

µ+⊥µ
−
⊥ to the Hopf frequency, see Chapter 5.

Table 3.1 contains a summary of relevant measurements. There seem to be no

measurements of γ although this seems to be possible by the current-response ex-

periments.

3.2.4 Intrinsic times and lengths, scaling

In the Table 3.2 I show the various intrinsic time, length and voltage scales of the

WEM subsystems. One sees that the full WEM has the potential for rich behaviour.
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Table 3.2: Intrinsic scales of the WEM

quantity definition typical value∗

threshold voltage Vc0 =
√

K11π2

ε0ε⊥
2.63 V

thermal voltage VT = kBT
e

26 mV

diffusion time τdiff = d2

Dphys ≈ Vc0
VT
τt 342 s

recombination time τrec = (2krn0)
−1 10−3...2× 104 s

carrier transition time τt =
d2

µVc0
3.39 s

director relaxation time τd =
γ1d2

K11π2
0.561 s

charge relaxation time τq =
ε0ε⊥
σ⊥

5.35× 10−3 s

momentum diffusion time τvisc =
d2ρm
γ1

6× 10−6 s

diffusion layer λD =
√

VT ε0ε⊥
2en0

=
√

VT ε0ε⊥µ
2σeq⊥

0.1 µm

∗ NLC I52 for d = 28 µm at T = 40◦C (see Appendix A.1)

Note that, by virtue of the Einstein law, the diffusion scales are not connected with

new material parameters. It is useful to scale lengths, times, the electric potential

and the total charge concentration in such a way that they become of the order of

unity for EHC. The chosen scaling is given in Table 3.3. Many properties of the

SM do not depend on the absolute values of the material parameters (in contrast to

the WEM), so the material constants will be scaled as well. Dependent quantities

are scaled accordingly, e.g., E in units of Vc0π/d and ρ in units of Vc0π
2ε0ε⊥/d

2.

Furthermore, it is sometimes useful to express the local conductivity in terms of the

deviation from its equilibrium value,

δσ(r, t) :=
σ⊥(r, t)

σeq⊥
− 1. (3.17)

Unless explicitely stated otherwise, all variables with the exception of the scaling

units ε⊥, σ
eq
⊥ , γ1, and K11 are understood as scaled variables in the rest of this thesis.

The resulting scaled WEM equations, which replace the SM equations (2.24)-

(2.26), are an important building block of this work and the basis for the investiga-

tions in the next three chapters. They read
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Table 3.3: Scaling

quantity scaling unit typical value ∗

lengths d/π (10...100µm)/π

time τd =
γ1d2

K11π2
0.166 s

(

d
10µm

)2

voltage Vc0 =
√

π2K11
σ⊥τq

=
√

π2K11
ε0ε⊥

1.19 V

conductivities σeq⊥ = µen0 10−9...10−7(Ωm)−1

orientational elasticities K11 6.66× 10−12N

dielectric constants ε0ε⊥ 4.65× 10−11As/Vm

viscosities γ1 = α3 − α2 0.109 kg (m s)−1

∗ parameter set MBBA I (Appendix A.1)

P1(∂t + v ·∇)ρ = −∇ · (µ′Eσ) + D̃∇µ′∇

(

ρ+
d̃σ

2P1π2α̃2

)

(3.18)

(∂t + v ·∇)(σ − d̃ρ) = −α̃2π2∇ · (µ′Eρ) + D̃

P1
∇µ′∇

(

σ − d̃ρ

2

)

(3.19)

− r̃

2

[

(σ + 1)(σ − 1)− d̃ρσ − P1π
2α̃2ρ2

]

(∂t + v ·∇)n = ω × n+ δ⊥
(

λAn− h
)

(3.20)

τvisc
τd

(∂t + v ·∇)vi = −∂ip− ∂j(T
visc
ij + πij) + π2ρEi, (3.21)

The system parameters R, ω0, P1, α̃ and r̃ are given in Table 3.4,

d̃ = (P1/γ)
1/2π(1 − γ)α̃ is a mobility-difference parameter and D̃ = 4s1(πλD/d)

2

the scaled diffusion constant. 2 The constitutive equations for ρ, h and T visc
ij are,

respectively, given by ∇ · (εE), Eq. (2.27), and Eq. (2.28) with the scaled material

parameters and εa replaced by π2εa in Eq. (2.27). The electric field

E =
√
2R cosω0tẑ −∇φ (3.22)

contains the two SM-control parameters. The fully rigid BC for homogeneous align-

ment and blocking electrodes are

2In contrast to the SM Eq. (2.24), the diffusion currents have been kept in Eqs. (3.18) and

(3.19). The approximation of zero diffusivities is usually assumed in the bulk. This may not be

justified for very thin cells where the thicknes of the boundary layers can become of the same order

as d (Chapter 4.) Furthermore, in the dielectric regime where the size of the patterns can be << d.

the neglect of the diffusivities becomes questionable even in the bulk.
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∫ π/2

−π/2
dz Ez =

√
2R cosω0t, (3.23)

[Jz]z=±π/2 =

[

Ezσ − D̃∂z

(

ρ+
d̃σ

2P1π2α̃2

)]

z=±π/2
= 0, (3.24)

[Jσz ]z=±π/2 =

[

−α̃2π2Ezρ+
D̃

P1
∂z(σ − d̃ρ/2)

]

z=±π/2
= 0, (3.25)

n(±π/2) = (1, 0, 0), v(±π/2) = 0. (3.26)

3.3 Discussion

The physical contents of the new Eq. (3.19) is an excitation of the charge-carrier

mode (σ mode) by the ρ mode ∝ α̃2, diffusion ∝ D̃ ∝ α̃2 and recombination ∝ r̃. 3

The WEM equations (3.18) - (3.26) contain much more parameters as other fluid-

dynamical systems. For example, the scaled Boussinesq equations for RBC in simple

fluids depend only on the Rayleigh number and the Prandtl number τtherm/τvisc.

The WEM contains two ”Rayleigh-number like” control parameters R and ω0, four

”Prandtl-number like” time-scale ratios of subsystems, P1, α̃, r̃ and τvisc/τd, one

ratio of WEM material parameters, γ, and a total of eight ratios of SM material

parameters, K22, K33, ε⊥, σ⊥ and four viscosities.

Fortunately, the dynamics is mainly determined by the first two classes (”system

parameters”), summarized in Table 3.4. The ratio τvisc/τd can always be neglected

(at least in the conductive range), i.e. the velocities can be adiabatically eliminated.

In many cases, also the charge can be adiabatically eliminated, P1 = 0.

The full WEM equations (3.18) to (3.21) seem too complex for direct theoretical

investigations. Fortunately, the typical parameters given in the tables in the last

section suggest some simplifications, depending on the particular situation. In the

following, I discuss the approximations of zero diffusivity, of a linear recombination

term and of zero mobility difference parameter d̃, which are used for the linear

and nonlinear calculations in Chapters 4 - 6. The approximations are valid in the

conductive regime, for not too extemely different mobilities and for α̃ << 1, i.e. for

not too thin cells and not too high mobilities. In addition, I discuss the limits where

the SM is recovered and relate various models used in the literature to special cases

of the WEM.

3For a nonzero mobility difference, these effects act on a linear combination of the carrier and

the charge-density fields, but it will be shown that the parts ∝ d̃ can be neglected in most cases.
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Table 3.4: System parameters of the WEM

parameter physical process MBBA# I52##

R = V
2

V 2c0
= V

2
ε0ε⊥

K11π2
control parameter ≥ 31 ≥ 14

ω0P1 = ωphys0 τq =
ω0ε0ε⊥
σ⊥

control parameter 0 · · · 2.5 0 · · · 4
P1 =

τq
τd

= ε0ε⊥K11π2

σ⊥γ1d2
charge relaxation 0.0095 0.00356

α̃ =
√
s1τqτdπ

τt
=

√

µ+⊥µ
−
⊥γ1π

2

σeq⊥ d2
ion migration 0.0253 0.024

r̃ = τd
τrec

= 2krn0τd recombination 0.05∗ 0.05∗

# Parameter set MBBA I with d = 13µm,
σ⊥ = 10−8(Ωm)−1, µ = 10−10m2/(V s), γ = 1.

## Parameters from Appendix A.1 for 40C; especially
d = 28µm, σeq⊥ = 0.493× 10−8(Ωm)−1, µ = 0.88× 10−10m2/(V s), γ = 1.

∗ Estimates, see Chapter 5.5

3.3.1 Approximations for low mobilities

in the conductive range

The thickness of the boundary layers, as deduced from the capacitance measurements

[31], is about 1 µm. This is of the same order as the thickness of the boundary

layer estimated from the WEM (see Chapter 4). The value of the diffusivity given

directly in Table 3.1 as well as that obtained indirectly from the mobilities by the

Einstein relation (3.8) lead to Debye lengths even well below 1 µm (Table 3.4). So it

seems reasonable, to neglect the diffusive boundary layers, at least in the conductive

range and for not too thin cells. There are some subtleties connected with the BC.

The equations (3.23) to (3.25) lead to an overdetermined system and impose the BC

Ez = 0 or ρ = 0 and σ = 0. This is, of course, plausible since the drift current cannot

be balanced by a diffusive current to satisfy the blocking BC, so its z component

must be zero. This is fulfilled either for Ez = 0 or, if there are no carriers at all.

On the other hand, a vanishing diffusivity and a vanishing mobility (leaving σ⊥
constant) means boundary layers of vanishing thickness representing a capacitor of

infinite capacity. For the carriers, this is an infinite sink and leads, as in the SM, to

”free” electric BC ∂zEz = ∂zσ = 0, no matter what the real BCs are.

There is one caveat connected with ion drift. For zero dissociation and recom-

bination, a DC voltage together with blocking BC would lead to a complete charge

separation (the bulk is free of carriers) after the time τt/
√
R. For a nonzero disso-

ciation with τrec/τt << 1, the total density of the (dissociated and non-dissociated)
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impurities will decay on a (larger) time scale τt/(
√
Rβc) (electrodialysis). 4 With

an AC voltage these separation effects occur only near the electrodes, within the

distance over which a carrier can migrate in one half-cycle, see Eq. (4.6) below. For

most experiments (especially for those on I52) this distance is comparable to that of

the thickness of the diffusion layer and both boundary effects can be neglected.

If α̃ << 1 (which is fulfilled unless the mobilities are extremely high or the cell

is extremely thin), the recombination term can be treated in linear order, even for

nonlinear calculations. For EHC in the conductive regime, the typical amplitude of

the carrier mode normalized to the charge-density mode is ||σ||/||ρ|| = O(πα̃2
√
Rc/r̃)

or O(πα̃2
√
Rc/ωH) = O(πα̃/

√
Rc), whichever is lower (ωH is related to the Hopf

frequency, Chapter 5 below and || ∗ || here denotes the amplitude). This means that

even in the fully nonlinear regime where ||ρ|| = O(1) all recombination terms in the

bracket of (3.19) are of the order of α̃2 << 1.

The only mobility-difference term surviving the above approximations is that

on the left-hand side of (3.19). If r̃ is sufficiently low, so that the condition for

a Hopf bifurcation is fulfilled (Chapter 5), the relative magnitude d̃||ρ||/||δσ|| =
O(P1Rc/γ)

1/2/(1 − γ)/π) is usually small. In addition, the d̃ term has the z and

time symmetry opposite to that of as the σ mode and does not couple back to the

WEM mechanism. With all these approximations the WEM equations (3.18) - (3.20)

become

P1(∂t + v ·∇)ρ = −∇ · (µ′Eσ) (3.27)

(∂t + v ·∇)σ = −α̃2π2∇ · (µ′Eρ)− r̃δσ, (3.28)

(∂t + v ·∇)n = ω × n+ δ⊥
(

λAn− h
)

, (3.29)

ρ|z=±π/2 = ∂zσ|z=±π/2 = 0. (3.30)

3.3.2 The limit of the Standard Model

Equation (3.27) reduces to the charge conservation of the SM for σ = 1 or δσ = 0.

Since the magnitude of δσ scales with α̃2/r̃, this is the case for α̃ → 0 while r̃ 6= 0.

In Chapter (3.3.1) it is argued that the boundaries behave effectively as the ohmic

BC of the SM if the boundary layers have a thickness << d. With the results from

Chapter 4 this is fulfilled for α̃ << 1, α̃/r̃ << 1 and α̃
√
P1/(ω

phys
0 τq) << 1 (ωphys0 is

the external frequency in unscaled physical units).

4In this and further order-of-magnitude estimates of drift distances, I assume, for simplicity, the

upper bound µ for the mobility of the faster drifting charge-carrier species.
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All above conditions for the SM limit can be summarized as

α̃→ 0, r̃ 6= 0, ω0 6= 0. (3.31)

3.3.3 Relation with models assuming fast recombination

In the limit of fast dissociation and recombination, the carrier mode can be adia-

batically eliminated by setting the bracket of Eq. (3.19) equal to zero. Inserting

the resulting σ(ρ) into (3.18) (where in contrast to (3.27) the diffusivity is retained)

leads to a ”bipolar charge conservation” equation for ρ, which is different from the

SM for α̃ 6= 0. Coupling this equation to an isotropic momentum balance equation

(Eq. (3.21) with α4 → 2η and all other viscosities set equal to zero) gives for a

DC voltage the model investigated by Turnbull [81]. Linear analysis for injecting

(rather than blocking) BC gives a convective DC instability [81], which, of course,

takes place also in isotropic fluids containing carriers.

In the unipolar limit ρ → ∞, n+ >> n− (ρ → −∞, n+ << n−) corresponding

to strongly injecting electrodes, this model reduces to that considered by Felici and

contains also a DC instability [90, 82].

At last, the fast-recombination limit of the WEM is obtained by coupling the

bipolar charge conservation σ(ρ) to the Eqs. (3.20) and (3.21) and assuming an AC

voltage and blocking BC. This model leads to an increase for the threshold of EHC,

but again, no Hopf bifurcation [91]. The threshold shift is plausible since, in contrast

to the injecting BC for the DC instabilities [82, 90], the change of the volume force

in the direction of the force is positive, ρEz∂z(ρEz) > 0 i.e. the volume forces of the

basic state act in the stabilizing direction.
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Chapter 4

Basic state

In contrast to the SM, the basic state of planar EHC in the WEM description is in

general not trivial, i.e. σ = 1, φ = 0, n = (1, 0, 0) and v = 0 is not a solution of the

WEM equations. For blocking electrodes this is obvious because charge conservation

together with finite conductivity leads to an accumulation of charges near the elec-

trodes. The only exception are plates having conductive properties as though the

NLC would extend behind the electrodes to infinity in the z direction. Actually, this

kind of ”ohmic” BC is assumed in the SM. Any other BC lead to boundary layers

(BL) with the general form

σ = σ0(z, t) ≡ 1 + δσ0(z, t), φ = δφ0(z, t), n = (1, 0, 0), v = 0. (4.1)

Global properties of the BL can be measured. The component of the dipole momen-

tum per area that is in phase with the external voltage leads for low frequencies to

a deviation of the capacitance from its dielectric value; the component with a phase

lag of π/2 leads to a contribution to the AC conductivity for low frequencies. Of

course, the DC conductivity equals zero for blocking BC.

In Chapter 4.1 I formulate the problem and discuss general properties of the basic

state. In the Chapters 4.2 and 4.3 the BLs arising from blocking BC are discussed

in the limits of slow and fast recombination. The latter case has been investigated

extensively in different contexts in the literature and I will show how the models used

there are related to special cases of the WEM. Chapter 4.4 gives the current response

of the NLC cell in the basic state for blocking BC in form of analytic approximations

for the low-frequency behaviour of the capacitance and the conductivity. Fits to the

experiments give a thickness of about 1 µm consistent with the values calculated

with the WEM. It is concluded, that, at least in the I52 experiments, the BLs are

not relevant for EHC. This means that, in a good approximation, the subsequent

35
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linearization of the WEM in Chapter 5 can be carried out with respect to the trivial

basic state. Thus the main part of the material contained in Chapter 5 is independent

of the presentation in this chapter, and readers not interested in the problem of the

basic state can continue with Chapter 5. The linear stability analysis starting from

the nontrivial basic state is formulated in Appendix A.2.

4.1 Boundary layers

The investigations in this chapter are based on the general scaled WEM equations

(3.18) and (3.19), without the approximations made in Chapter 3.3.1. The Eqs.

(3.27) - (3.30) resulting from these approximations are the basis for the Chapters 5

and 6.

Inserting the ansatz (4.1) for the nontrivial basic state into the equations (3.18)

and (3.19) results in

P1∂tρ0 = −∂z (E0σ0) +D∂2z

(

2s1ρ0 +
d1σ0
α

)

, (4.2)

P1∂t(σ0 − αd1ρ0) = −α2s1∂z(E0ρ0) +Ds1∂
2
z (2σ0 − αd1ρ0)

− r̃P1
2

[

σ20 − 1− αd1ρ0 − α2s1ρ
2
0

]

. (4.3)

In contrast to the linearization in Chapter 5, the director relaxation plays no role,

and the charge relaxation time rather than the geometric mean
√
τqτd and the sum

of the mobilities rather than their geometric mean is relevant for the basic state.

Furthermore, the diffusion length in the basic state is directly related to λD. So I

introduced as new mobility parameter the ratio of the charge relaxation time to the

transition time for the mobility sum µ under the voltage Vc0, and as new diffusion

parameter the scaled Debye length [92],

α =
τq
τt
π2 =

µVc0τqπ
2

d2
=

√

P1π2

s1
α̃, (4.4)

D = 2

(

πλD
d

)2

=
D̃

2s1
. (4.5)

Assuming γ = 1, α varies from 0.016 for T = 30◦C to 0.0032 for T = 60◦C and

D ≈ 0.01α in the I52 experiments [31, 42]. Equations (4.2) and (4.3) are a set of

partial differential equations with inhomogeneous BC for ρ0 = −∂2zφ0 and σ0. With

respect to the z derivatives, they are of forth order in φ0 and of second order in σ0.

The necessary six BC are φ0(z = ±π/2, t) = 0, and the four BCs (3.24) and (3.25).
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The nonlinearities arise from the recombination terms in the bracket and from the

”drift advection terms” ∂z(E0ρ0) and ∂z(E0σ0).

A first estimate of the (scaled) BL thickness, valid for any recombination rates,

is set by the amplitude λmig of the carrier-drift oscillations under the AC field, 1.

λmig =
α
√
R

πωphys0 τq
. (4.6)

Since the charge-density parts of the BL relax while they migrate, the effective

thickness of the ρ-BL caused by the drift effects cannot exceed the distance λq = α
√
R

travelled in one charge relaxation time.

4.2 Estimates for slow recombination

Assuming τrec >> τq, the carrier-density mode cannot follow the oscillations of the

external field, so σ0(z) is assumed to be approximately constant in time. The blocking

BC induce oscillating charges, so ρ0(z, t) oscillates with the external field. We are

only interested whether there are boundary layers that are much thicker than the

ρ-BL whose thickness is bounded by λmig, Eq. (4.6). Outside the ρ-BL, the Eqs.

(4.2) and (4.3) can be linearized. The ansatz

ρ0 = (ρ+0 cosω0t+ ρ−0 sinω0t)e
−k(z−π/2),

δσ0 = σ00e
−k(z−π/2) (4.7)

leads to three eigenvalues kn corresponding to three characteristic lengths λBL,n =

1/kn. There are two modes dominated by ρ with λBL of the order of λD, and much

less than λD, respectively. The third mode dominated by σ has the decay length

λBL,σ =

√

s1(Rα2 + 2D)

r̃P1
. (4.8)

For a zero electric field, the three modes are decoupled and λBL,σ results from the

interplay of diffusion and recombination relaxation of the σ field. For r̃ = 0.05

relevant for an experiment using I52 (see Chapter 5.5), the thickness of the σ-BL

would be nearly 40% of the cell thickness, but this mode is not excited for blocking

BC. Nevertheless, this problem should be investigated numerically.

1In this estimate, 2
√
2/π is set equal to one.
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4.3 Limit of fast recombination

If τrec << ω−1
0 and τrec << τd, the carriers are in local equilibrium with respect to the

dissociation-recombination reaction so that n+n− = n20. This corresponds to r̃ →∞,

i.e., the bracket in Eq. (4.3) must become zero. This is automatically fulfilled by

expressing the carrier densities in terms of the ”diffusion potential” u, defined by

n± = n0e
±u, or

ρ0(u) =
2 sinhu

α
, (4.9)

σ0(u) =
eu + γe−u

1 + γ
. (4.10)

The right-hand side of (4.2) becomes −∂zJ0 where the current is given by

J0(u) = σ0(u)
[

E0 −
D

α
∂zu

]

= σ0(u)
[

E0 −
VT
Vc0

∂zu
]

, (4.11)

and Eq. (4.2) itself can be written as

P1∂t sinhu = −σ0(u)
[

α

2

J0(u)∂zσ0(u)

σ20(u)
+ sinhu− D

2
∂2zu

]

. (4.12)

The form of the current is obvious from the derivation of the WEM. In the fast-

recombination limit, the thermodynamic forces F ±, Eqs. (3.6), are given by

F± = ∓e∇(φ̃0 + VTu), so J0 = µ+⊥∂zF
+
z − µ−⊥∂zF

−
z = σ⊥∂z(E0 − VT∂zu), which is

just Eq. (4.11) in physical units.

The electric field in the Eqs. (4.11) and (4.12) is given by

E0(z, t) = Eb(t) +
∫ z

−π/2
dzρ0(u) (4.13)

where the field Eb(t) = E0(z = −π/2) is determined by the condition J0(u) = 0 at

z = −π/2 with J0 from Eq. (4.11). After some transformations using the condition

of overall neutrality E0(z = −π/2) = E0(z = π/2), the result is

Eb(t) =
1

π

(

p(t)−
√
2R cosω0t

)

, (4.14)

p(t) =
∫ π/2

π/2
dzzρ0 = 2

∫ π/2

π/2
dzz

sinh u

α
. (4.15)

p(t) has the physical meaning of a dipole momentum per area.

Equation (4.12) with (4.11), (4.9) and (4.10) represents a partial integro-differential

equation for the field u(z, t). The ”integro” part comes from the electric field, Eq.
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(4.13) and the BC (4.14). It was solved numerically with a finite-difference method in

real space. The z derivatives are represented as centered differences of second order

and the integral parts are calculated using the trapezoid rule. For the time steps, an

implicit second-order Crank-Nicholson method was applied for all local terms and

an Euler step for the nonlocal parts. For the numerical calculations [93], space was

scaled by λD, time by τq and the voltage by VT , and then the equations (4.12) and

(4.14) take the compact form (u′ ≡ ∂zu)

∂t sinhu = −σ0(u)[sinhu− u′′] +
[

u′ − u′b −
∫ z

0
dz sinhu

]

∂σ0
∂u

u′, (4.16)

u′b =
λD
d

[

∫ d/2λD

−d/2λD
dzz sinhu− V

√
2

VT
cosωphys0 τqt

]

. (4.17)

Note that in this scaling the integro-PDE itself contains only the ratio γ while the BC

(4.17) contains the three system parameters of the basic state, d
λD

, V
VT

and ωphys0 τq.

The BCs are implemented by calculating from (4.17) two ”virtual” points just one

grid unit outside of either electrode and using these points in the z derivatives of the

next step. As initial conditions, all fields were set equal to zero and several external

periods (typically 10 corresponding to 104 time steps) were simulated before the

actual period which is plotted to obtain approximately steady-state conditions.

In the following, I present results for γ = 1. In this case, further simplifications

are possible (see below), which are not essential for the numerical solution, but can

be used to make contact with previous work.

Figure 4.1 (a) shows the field u(z, t) and Figure 4.1 (b) the electric field E0(z, t)

in the WEM scaling for the parameters d/λD = 26, V /VT = 143, and ωphys0 τq =

0.2π. Figure 4.2 shows u(z, t), E0(z, t), and the local current density I0(z, t), for

a higher frequency of the AC voltage. In physical units, the voltage is half of the

threshold voltage in the MBBA experiments [39, 40]. The thickness of 13µm in these

experiments corresponds to λD = 0.5 µm or, with the formula for λD in Table 3.2

and for σ⊥ = 10−8(Ωm)−1, to µ = 3× 10−9m2/(Vs).

Since in a rather large part of the bulk region the fields are nearly those of

the trivial SM state, the electric field in units of VT/λD, rather than the voltage,

determines the dynamics of the BLs. The spatio-temporal behaviour of the scaled

fields in the Figs. 4.1, 4.2, and Fig. 4.3 is invariant under a transformation V → βV
′
,

λD → β−1λ′D corresponding to µ→ β−2µ′.

Figure 4.3 illustrates how the blocking BCs lead to a charge accumulation. In

contrast to strongly injecting electrodes which can lead to the Felici instability [82],

the blocking BC lead to a volume force which points always towards the electrodes

and thus acts stabilizing.
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Figure 4.1 (a) Diffusion potential u = ln(n+/n−) and (b) local electric field, E = E0ẑ

of the WEM basic state in the fast-recombination limit for blocking electrodes and for an
applied voltage corresponding to half of the threshold voltage. Assumed is an Debye length
of λD = 0.5 µm .
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Figure 4.2 (a) Diffusion potential, (b) local electric field, and (c) local current for the
MBBA cell of Fig. 4.1 above, but for a higher external frequency of ω0τq = π.
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Note that, in principle, Equation (4.12) can be written as a PDE of third-order

with respect to the z derivatives by solving for E0, differentiating both sides, and

setting ∂zE0 = ρ0 = 2 sinhu/α. This form is, however, numerically less stable.

Special cases

For equal mobilities (γ = 1), the condition n+n− = n20 can be written as σ0 =

(1 + ρ̃20)
1/2 and (4.2) becomes

P1∂tρ̃0 = −ρ̃0
√

1 + ρ̃20 −
αE0ρ̃0

2
√

1 + ρ̃20
∂zρ̃0 +

D

2
∂2z ρ̃0. (4.18)

The three terms on the right-hand side can be interpreted as relaxation of the charges

with the linear relaxation rate enhanced by a factor of (1 + ρ̃20)
1/2, while the carriers

drift with the velocity µ+E0 of either species times a factor ρ̃0/(1+ ρ̃
2
0)
1/2, and diffuse

with a constant rate. The slowing down of the effective velocity for decreasing ρ̃20 is

illustrated by the ”charge wave” in Fig. 4.2 for t=0...π near the left electrode and in

Figure 4.3, where the charge wave moves quickly to the right if ρ̃20 is large (Figures

4.3a - 4.3c) and slows down and eventually relaxes (Figures 4.3d and 4.3e).

In the stationary case (DC driving), charge conservation implies a constant cur-

rent and Eq. (4.12) reduces to the condition that the bracket be zero. Neglecting

diffusivities, this condition can be writen as

du

(

eu − γe−u

(eu + γe−u)2(eu − e−u)

)

= − dz

J0α(1 + γ)
. (4.19)

The integration gives the rather lengthy Eq. (14) in Ref. [81]. In the unipolar limit

this gives the well-known basic state ρ0 = (J0/(2α)
1/2 of the Felici instability [82].

At last, the linearization of (4.12) in the stationary limit (E0 =
√
R/π) gives

two decay length scales associated with the combined effects of diffusion, drift and

relaxation.

4.4 Low-frequency behaviour of the resistance and

the capacitance

Throughout this section I use unscaled (physical) units. The general current response

for any BC is the sum of the conductivity current and the displacement current. For

a NLC cell with an area A in the x and y directions, one obtains

I(t) = A
[

jz + ∂tε0
(

εE
)

z

]

, (4.20)
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Figure 4.3 Snapshots of the WEM basic state of Fig. 4.1 for five times covering a half
period. Shown is the space charge ρ̃0 = sinhu (solid), the local field E0 (dashed), and the
local current I0 (point-dashed).
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where j and ∂tε0εE are the conductivity and displacement currents. With the help

of charge conservation, Eq. (4.20) can be transformed into

I(t) = A

[

jBC + ∂t

(

ε0ε3jEj +
p(t)

d

)]

, (4.21)

where x denotes the average of the quantity x over the cell volume and jBC is the

horizontally averaged current density through the boundaries (jBC = 0 for blocking

BC). Overall neutrality implies jBC(z = −d/2) = jBC(z = +d/2).

Below threshold, the averaged displacement current ε0∂tε3jEj = ε0ε⊥∂tV (t)/d is

strictly in phase with the time derivative of the voltage and leads to the dielectric ca-

pacitance. For blocking BC, all nontrivial parts of the resistance and the capacitance

are related to p(t).

4.4.1 AC Resistance and capacitance

The AC resistance R 2 and capacitance C are defined by the Fourier-transformed

current response I(ω),

1

R
= Re

I(ω)

V (ω)
, (4.22)

C =
1

ω
Im

I(ω)

V (ω)
. (4.23)

With Eq. (4.21), one arrives at

1

R
=

A

d

[

−ωIm
(

p(ω)

V (ω)

)

+Re

(

jBC(ω)d

V (ω)

)]

, (4.24)

C = Cdiel +
A

d

[

Re

(

p(ω)

V (ω)

)

+
1

ω
Im

(

jBC(ω)d

V (ω)

)]

, (4.25)

where Cdiel = Aε0ε⊥/d.

4.4.2 Analytic approximations for blocking boundaries

The considerations in the previous sections show, that in a good approximation

λBL << 1 for the relevant modes. In addition, I assume for the BLs the functional

form

ρ0 = ρl(t)e
−(z−d/2)/λBL + ρr(t)e

−(d/2−z)/λBL , ρl = −ρr. (4.26)

2In this section, R is not the control parameter
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(in view of, e.g., Figure 4.1, this is a rather crude approximation). Charge conser-

vation leads to a dynamical equation for ρl which can be expressed as one for the

dipole moment per area,

∂tp = −
2λBL
τqd

p+ V (t)σ⊥. (4.27)

Substituting this into (4.24) and (4.25) yields the result

R = R∞



1 +

(

λ′

ω0τq

)2


 , (4.28)

C = Cdiel

(

1 +
λ′

(ω0τq)2 + λ′2

)

, (4.29)

where R∞ = d/(Aσ⊥) is the high-frequency resistance and λ′ = 2λBL/d is the fraction

of the cell volume occupied by the BLs.

Fitting these relations to the capacitance and resistivity measurements of Dennin

[31] gives an effective thickness of the charge BL of about 0.9 µm . In the experi-

ments, the external frequency always satisfies ωphys0 τq >> λ′, so Eq. (4.29) predicts

C − Cdiel ≈ λ′/(ωphys0 τq)
2. The measured low-frequency behaviour, however, fits

better to a (ωphys0 τq)
−1 law. The discrepancy is possibly a result of the the crude

approximation (4.26).
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Chapter 5

Linear analysis

In this chapter, I present the linearization of the WEM in the conductive range

which is for materials with εa < 0 restricted to relatively low external frequencies.

The emphasis lies on approximate analytic results, to see the functional dependence

of the various quantities. After several approximations (well-controlled for usual

parameter ranges), one arrives at a linear 2× 2 normal form for the amplitudes of

the charge-carrier mode and of the critical conductive mode of the SM. Solving this

2 × 2 equation with the ansatz eλt leads at threshold (Re λ =0) for certain ranges

of the system parameters to a nonzero imaginary part ωH which can be identified

as the Hopf frequency. More specifically, the condition for the Hopf bifurcation is

r̃ < Rcα̃C
′ (where C ′ is of the order of unity) and if this condition is well satisfied,

(r̃ ≤ 0.5Rcα̃C
′ will do for practical purposes), the Hopf frequency is proportional to

α̃ ∝
√

µ+⊥µ
−
⊥ and has a functional dependence on the external frequency ω0 depending

only on SM parameters.

These predictions are compared with two sets of experiments employing the NLCs

MBBA and I 52. The dependence of the Hopf frequency and of the capacitance on

ω0 agrees nearly quantitatively with the experiments and the fit to the frequency

of the measured travelling waves gives a geometric mean of the mobilities of about

1.6× 10−10m2/(Vs) for MBBA and of 0.45× 10−10m2/(Vs) for I 52, consistent with

the reported data of Table 3.1. The mechanism leading to a Hopf bifurcation is quite

similar to that of other periodic-oscillatory pattern-forming systems. This will be

discussed by comparing the WEM with three thermal convection systems.

As a ”by-product” of this approach, an analytic approximation of the three-

dimensional linear stability analysis of the SM, performed some time ago [47, 48], is

given in the form of a new, intuitive threshold formula.

Readers not interested in the details of the linearization of the SM and the WEM

47
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(or who are abhorred by longer equations) can start with the 2× 2 equations (5.38)

in Chapter 5.4, bearing in mind that this system results from the basic equations by

applying a Fourier transform in x, y, and in time, a lowest-order Galerkin expansion,

and adiabatically eliminating the velocities and the charge density.

5.1 Linearization of the WEM equations

We decompose the fields of the scaled WEM model, Eqs. (3.18) - (3.21) into the basic

state Eq. (4.1), denoted by an index 0, and into linearized perturbations, denoted

by a superscipt (1). The basic state is a superposition of the trivial basic state (basic

state of the SM together with σ = 1) and of the WEM boundary layers which are

denoted by δ,

E = E0(z, t)ez −∇φ(1)(r, t) = [π−1
√
2R cosω0t+ δE0(z, t)]ez −∇φ(1)(r, t),

ρ = δρ0(z, t) + ρ(1)(r, t) = δρ0(z, t) + ε̂φ(1) + εaE0∂xn
(1)
z ,

σ = σ0(z, t) + σ(1)(r, t) = 1 + δσ0(z, t) + σ(1)(r, t),

n = (1, 0, 0) + (0, n(1)y , n(1)z ),

v = v(1).
(5.1)

The charge density of the boundary layers is denoted with δρ0 = ∂zδE0, and ε̂ =

−ε′ij(n0)∂i∂j = −(∇2 + εa∂
2
x). The linearized WEM equations are obtained by

inserting the decomposition (5.1) into the Eqs. (3.18) - (3.21) and the BCs (3.23)

– (3.26). For a nontrivial basic state, these equations are rather lengthy. They are

given for normal rolls in Appendix A.2.

In the following, I assume the trivial SM basic state which is a good approximation

if the cell thickness is much larger than the sum of the thicknesses of the two BLs,

2dBL ≤ 2 µm (Chapter 4). Furthermore, I neglect all diffusivity terms, a good

approximation if the smallest length scale of the rolls is much larger than the Debye

length, 2π/|qc| >> 0.2 µm , which is always fulfilled in the conductive range. The

intrinsic time scale of the velocities, given by the diffusion time τvisc in Table 3.2, is

always negligibly small compared to the director relaxation time, so the velocities can

be adiabatically eliminated by setting (∂t+v ·∇)v equal to zero in the momentum-

balance equations.

After a Fourier transform of the linearizedWEM fields u(1) ≡ (φ(1), σ(1), n(1)z , n(1)y ,v(1)),

u(1)(r, t) = eiq·xu(z, t) + c.c., (5.2)

the equations of the linearized WEM equations for the charge density, the local

conductivity, the director fields nz and ny, the z and y components of the curl of the
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momentum balance, and the incompressibility condition, are given by

[P1∂tε̂q + σ̂q]φ+ E0∂zσ +
[

P1εa(Ė0 + E0∂t) + σaE0

]

iqnz = 0, (5.3)
[

α̃2π2E0∂z − d̃∂t
]

ε̂qφ+ [∂t + r̃] σ +
[

εa(α̃
2π2E2

0∂z − d̃∂tE0)
]

iqnz = 0, (5.4)

−εaπ2E0q
2φ+

[

∂t + K̂zz − εaπ
2E2

0

]

iqnz + K̂zypny

+α3iq∂zvx + |α2|q2vz = 0, (5.5)

−K̂zyipnz +
[

∂t + K̂yy

]

qny + α3iqpvx − |α2|q2ivy = 0, (5.6)

α3p∂z∂tnz −
[

α2q
2 − α3p

2
]

∂tiny

−
[

(η0 − η1 − α2)q
2 + η2(p

2 − ∂2z )
]

pvx

+
[

η1q
2 − (η2 − α3 − α4)p

2 − α4
2
∂2z

]

qvy +
[

q(η2 − α3 −
α4
2
)∂z

]

ipvz = 0, (5.7)

−π2E0q
2ε̂qφ−

[

(α2q
2 + α3∂

2
z )∂t + εaπ

2E2
0q

2
]

iqnz

+α3pq∂z∂tny +
[

(η0 − η1 − α2)q
2 + η2(p

2 − ∂2z )
]

∂ziqvx

+
[

q(η2 − α3 −
α4
2
)∂z

]

iqpvy +
[

(η2 − α3 − α4)∂
2
z + η1q

2 +
α4
2
p2
]

q2vz = 0, (5.8)

iqvx + ipvy + ∂zvz = 0, (5.9)

where

ε̂q = (1 + εa)q
2 + p2 − ∂2z , σ̂q = (1 + σa)q

2 + p2 − ∂2z , (5.10)

K̂zz = K33q
2 +K22p

2 − ∂2z , K̂zy = (1−K22)q∂z,

K̂yy = K33q
2 + p2 −K22∂

2
z , (5.11)

η1 = (−α2 + α4 + α5)/2, η2 = (α3 + α4 + α6)/2,

η0 = α1 + α4 + α5 + α6. (5.12)

The coefficients η1, η2, and α4/2 := η3 are sometimes called Miesowicz coefficients

and can be measured directly by simple shear experiments (see, e.g., [25]). The BCs

at z = ±π/2 are

φ = ∂zσ = nz = ny = v = 0. (5.13)

The SM part of this set is given, with a different scaling, in Eqs. (3.2a-f) of Ref.

[48]. The transformations φ → πφ, θ → −inz, ψ → ny, vx/y → −ivx/y, vz → vz,√
2/πV eiωt → πE0, V

2
/π2(1 + e2iωt) → π2E2

0 , d → π, ∂t → P1∂t in Eq. (3.2a),

ρmd
2/π2 → P2 ≈ 0, and ε0, ε⊥, σ⊥, γ1, and K11 set to unity, brings these equations

into our notation.
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5.2 Approximate analytic approach

Equations (5.3) - (5.9) with πE0 =
√
2R cosω0t [see Eq. (5.1) for the trivial basic

state δE0 = 0] represent a linear system with periodic coefficients allowing the

Floquet ansatz

u(z, t) = ũ(z, ω0t)e
λ(q,R)t = Σnũ

(n)(z)e[λ(q,R)+inω0]t, (5.14)

where the Floquet functions ũ are 2π periodic in the second argument. Of course,

there are infinitely many branches m = 1, 2, ... with growth rates λm(q, R). The spe-

cial symmetries of the SM (without flexoeffect) lead to a separation of the eigenspace

of the SM modes into four orthogonal subspaces, called IA, IB, IIA, IIB in [52, 94].

In class I, (”symmetric”), the fields φ̃, ñz, ṽz are symmetric in z while the horizontal

components of ñ and ṽ are antisymmetric. In class A (”conductive”), the electric

fields φ̃, ρ̃, etc. are antisymmetric with respect to a time translation by a half external

period, t → t + π/ω0, and all other fields are symmetric. In class II (”antisymmet-

ric”) and B (”dielectric”), the symmetries are opposite. The terms ∝ α̃ in the WEM

equation (5.4) retain this symmetry separations. The σ field corresponding to the

IA modes of the SM is antisymmetric in z and symmetric with respect to the time

translation t → t + π/ω0. The terms ∝ d̃ in (5.4) couple the IA to the IIB modes

and the IB to the IIA modes. In particular, the φ field of the IA mode excites a σ

field symmetric in z and antisymmetric with respect to t→ t+ π/ω0 which couples

back to the φ field of the IIB mode of the SM. Like the flexoelectric terms [94], the

terms ∝ d̃ break both symmetries while retaining the symmetry with respect to a

simultaneous reflexion in z and time translation by a half external period. Usually,

the terms ∝ d̃ are small (see Chapter 3.3) and will be neglected in the following.

This corresponds to a linearization of the simpler equations (3.27) – (3.30) together

with the fluid equation (3.21) and the BCs (3.26), instead of the Eqs. (3.18)-(3.26).

To obtain analytic results for the conductive regime (where the IA mode has

the lowest threshold), I apply to the Floquet functions the ”lowest-order Fourier

expansion” in time, where only the lowest-order nontrivial IA contributions of each

field are retained [48]. The approximation is justified if τd >> 2π/ω0 >> τq [48] i.e.

necessarily P1 = τq/τd << 1, which is usually fulfilled.

After eliminating vx by the incompressibility condition (5.9), the z dependence of

each field is approximated by a test function satisfying the symmetries and the BC

(which can be seen as a lowest-order Galerkin expansion). Specifically, I represent

the fields by the following lowest-order terms of the combined Fourier expansion in

t and Galerkin expansion in z,
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ũ(z, ω0t) =

√

2

π

























σ(0) sin z

cos z(φ+ cosω0t+ φ− sinω0t)

n(0)z cos z

n(0)y sin 2z

v(0)y sin 2z

v(0)z

√

π
2
C1(z)

























, (5.15)

where φ+ and φ− are defined by (compare Eq. (5.14)) φ+ cos z = φ̃(1) + φ̃(−1),

φ− cos z = i(φ̃(1)− φ̃(−1)), and C1(z) is the lowest-order Chandrasekhar function [73],

C1(z) =
cosh (λ1z)

cosh
(

λ1
π
2

) − cos (λ1z)

cos
(

λ1
π
2

) ; λ1 = 1.50562. (5.16)

By projecting Eq. (5.3) onto cos ze±iω0t and the Eqs. (5.4), (5.5), (5.6), (5.7) and

(5.8) onto sin z, cos z, sin 2z, sin 2z, and C1(z), respectively, one obtains a 7 × 7

eigenvalue system of the form

[

λ(q, R)B(q, R, ω0)− L(q, R, ω0)
]

(σ(0), φ+, φ−, n(0)z , n(0)y , v(0)y , v(0)z ) = 0 (5.17)

for the growth rate λ(q, R).

Although the above approximations may appear rather crude, they nevertheless

lead to quantitatively good results. This is shown in Table 5.1 for the threshold

voltage Vc = Vc0
√

RSMc and the corresponding wavevectors qc and pc resulting from

the minimum Rc of the neutral surface R
SM
0 (q, p). Compared are the analytic formula

for the neutral surface of this work, Eq. (5.21) below, with numerical results, with

the formula resulting from the choice of sin2 z instead of C1(z) as test function for

vz, and also with the exactly solvable case of ”free” BC [48]. Another possibility

consists in representing vx by a test function, e.g., sin 2z, rather than using the

(exact) incompressibility condition [48]. Furthermore, one can express the velocities

in terms of the potentials f and g, given as Eq. (2.29), and approximate the z

dependence of f and g by the test functions C1(z) and sin 2z, respectively [95]. The

accuracy is similar to Eq. (5.21); the threshold formula contains more projection

integrals but the representation of v in terms of f and g is preferable as a starting

point for the nonlinear Galerkin analysis. The bottom line is, that it is preferable to

satisfy the incompressibility condition exactly but that the choice of test functions

is not critical, as long as they satisfy the correct rigid BC (2.31).

Within the Galerkin approximation, the adiabatically eliminated velocities can
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Table 5.1: Comparison of different analytic threshold formulas

approximation MBBA I, ω0τq = 0.5 MBBA I, ω0τq = 2 I52, 30◦C, ω0τq = 0.5

Vc qc Vc qc Vc qc pc
Eq. (5.21)

(See also [50])
7.205 1.591 30.95 3.114 14.61 1.068 0.734

Ref. [95] 7.375 1.603 33.62 3.24

Ref. [48] 7.382 1.475 17.66 2.125
Eq. (5.21) with

sin2 z for vz
7.353 1.619 31.70 3.188 14.87 1.072 0.773

free BC 6.244 1.314 28.02 2.779 12.57 0.801 0.708

numerical result 7.171 1.592 31.81 3.15

then be expressed in terms of ”effective viscosities” with the result

v(0)z =

π2E√
2
ρ+ + λ

(

−a2iqn(0)z + a′2
ηzy
ηyy
pn(0)y

)

η
(eff)
z q2

, (5.18)

iv(0)y =
p

q

ηzy
ηyy

v(0)z +
λ
(

α3I2ipn
(0)
z + (α3p

2 − α2q
2)n(0)y

)

ηyyq3
. (5.19)

The effective shear viscosities η(eff)z and ηyy and the effective rotational viscosities

a2 and a′2 are given, together with the other ”effective” quantities, in Chapter 5.3;

E =
√
R/π is the rms. of the external field, and ρ+ is the in-phase part of the

oscillatory charge density. The expression for v(0)z is very intuitive and is reminiscent

of the former one dimensional [34] and two dimensional [46] models. For stationary

conditions, the time-independent part ρ+E of the volume force is balanced by the

viscosity force η(eff)z q2v(0)z , discussed further in Chapter 5.3. A nonzero director

rotation (λ corresponds to ∂t) leads via the orientational viscosities to a further drag

onto the fluid which is, again, balanced by the viscous force.

Apart from very thin cells (d ≤ 10 µm ), the charge relaxation time is also much

shorter than τd (P1 << 1) and the charge variables φ+ and φ− can be adiabatically

eliminated as well,

ρ+ = εqφ
+ + εaE

√
2iqn(0)z = −E

√
2

(

σ(eff)a iqn(0)z +
εq

σq(1 + ω′2)
σ(0)

)

, (5.20)

where εq = (1 + εa)q
2 + p2 + 1 and σq = (1 + σa)q

2 + p2 + 1 are the Galerkin

projections of the operators ε̂q and σ̂q. The SM part −E
√
2σ(eff)a iqn(0)z with the

effective conductivity σ(eff)a , Eq. (5.23), contains the Carr-Helfrich mechanism which
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will be discussed in the following Chapter 5.3. The second part of Eq. (5.20) describes

the charge separation due to the gradients of the total carrier density and gives rise to

a second feedback cycle involving the carrier-density mode. This second stabilizing

feedback provides the possibility for a nonzero Hopf frequency and will be discussed

in Chapter 5.4.

5.3 Carr-Helfrich mechanism and

analytic threshold formula

Above a certain (frequency dependent) threshold for the rms value
√
R of the ap-

plied voltage, the growth rate λ(q, R) of the fastest-growing branch with a wavevector

q = (q, p) crosses zero. This defines the neutral surface R = R0(ω0, q, p). The global

minimum of R0 with respect to q and p defines the critical wavenumbers qc and pc and

the threshold Rc = R0(qc, pc). Inserting the adiabatically eliminated field inhomo-

geneity φ+, Eq. (5.20), and the adiabatically eliminated velocities, Eqs. (5.18) and

(5.19), into the Galerkin projection of the Eqs. (5.5) and (5.6), and setting σ(0) = 0

leads to a 2×2 eigenvalue equation of the form
[

B(q)λ+ L(q, R, ω0)
]

(n(0)z , n(0)y ) = 0

where the components of B and L are just numbers (this equation is the SM part of

the 3× 3 equations in Appendix A.3). Since the SM does not lead to an oscillatory

instability, the neutral curve RSM0 is defined by λ = 0 and the ensuing determinantal

condition Det[L(q, R, ω0)] = 0 leads to the result 1

RSM0 =
K(eff)

ε
(eff)
a + a2σ

(eff)
a

η(eff)

, (5.21)

with the effective orientational elasticity

K(eff) = Kzz −
p2K2

zy

q2Kyy

, (5.22)

Kzz = K33q
2 +K22p

2 + 1,

Kyy = K33q
2 + p2 + 4K22,

Kzy = (1−K22)qI2,

the effective anisotropy of the conductivity

σ(eff)a =
σa

1 + ω′2

(

εq
σq
− εa
σa

)

, (5.23)

1Here and in the following, the projection integral I = 0.986 of
√

2/π cos z and C1(z) is set

equal to one
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ω′ = ω0τqεq/σq, (5.24)

σq = (1 + σa)q
2 + p2 + 1, εq = (1 + εa)q

2 + p2 + 1, (5.25)

the effective dielectric constant

ε(eff)a = εa
(

q2 + p2 + 1
)

(

σ−1q + ω′2εq

1 + ω′2

)

, (5.26)

the effective orientational viscosity coupling the director to the fluid,

a2 = −α2 + α3

(

1

q2
− ηzyp

2I2
ηyyq3

)

, (5.27)

and the effective viscosity

η(eff) =
η(eff)z

1 +
p2Kzyηzya′2
q2Kyyηyya2

, (5.28)

a′2 = −α2 + α3

(

p2

q2
− ηyy
ηzy

Ip
q

)

, (5.29)

η(eff)z = ηzz −
p2η2zy
q2ηyy

, (5.30)

ηzz = η1 + (η1 + η2 + α1)
I1
q2

+
α4
2

p2

q2
+ η2

λ41 + I1p
2

q4
, (5.31)

ηyy = η1 + (η1 + η2 + α1)
p2

q2
+

2α4
q2

+ η2
p4 + 4p2

q4
, (5.32)

ηzy = (η1 + η2 + α1 − α4/2)
Ip
q
+ η2Ip

4 + p2

q3
, (5.33)

(5.34)

where η0, η1, and η2 are given in Eq. (5.12). The projection integrals are given by

I1 = −〈C1, ∂
2
zC1〉 = 1.2465,

I2 =
2
π
〈cos z, ∂z sin 2z〉 = 0.848,

Ip =
√

2
π
〈C1, ∂z sin 2z〉 = 1.1119,

λ41 = 〈C1, ∂
4
zC1〉 = 5.1388,

(5.35)

where 〈...〉 stands for the integration over z from −π/2 to π/2.

Equation (5.21) is written in such a way that the major effects contributing to

the Carr-Helfrich mechanism are separated out. K (eff) describes the elastic torque

on the director, which, at threshold, is balanced by the electric forces due to charge

accumulation ∝ σ(eff)a E
2
and due to the dielectric anisotropy, ∝ ε(eff)a E

2
.
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Figure 5.1 The dependence of the effective conductivity anisotropy, Eq. (5.23), and of
the effective dielectric anisotropy, Eq. (5.26), on q, p, and ω0.
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Eq. (5.28). The divergences of K(eff) for q → 0 and of η(eff) for q → ∞ lead to a finite,
nonzero qc.
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Figure 5.3 Contour plots of (a) the neutral surface, Eq. (5.21), and (b), the product
K(eff) η(eff) . The parameters are for I 52 at 30◦C. The external frequency ω0τq = 0.5.

For εa < 0, the dielectric energy has a minimum for n · E = 0. The main

contribution of the dielectric torque, εaπ
2E2

0(t)iqnz in Eq. (5.5), tends to align the

director perpendicular to the undistorted electric field. Additional contributions

due to field distortions (∇φ 6= 0) lead, in the lowest-order Fourier and Galerkin

expansions, to a total dielectric torque ε(eff)a π2E
2
iqn(0)z thus defining ε(eff)a . As shown

in Fig. 5.1, ε(eff)a is essentially equal to εa for all q, p, and ω0. For εa < 0, this

contribution is stabilizing.

With the help of the Eqs. (5.18) and (5.20), the dominant contribution of the

Carr-Helfrich part |α2|q2vz of the director equation Eq. (5.5) with vz can be written

as

γ(Carr Helfrich) =
a2σ

(eff)
a π2E

2
iqn(0)z

η(eff)
. (5.36)

γCarr Helfrich is an electrically induced torque onto the director that acts indirectly

via the fluid (compare the Figs. 5.4 and 5.12): A director bend leads via the con-

ductivity anisotropy to a divergence of the electric current (with the main contri-

bution σaE0(t)iqnz in Eq. (5.3)), which gives rise to a charge accumulation and

to a volume force ρE onto the fluid. In the lowest-order of the Fourier expan-

sion in t, only the part ∝ ρ+E of the volume force not oscillating with the electric
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field, and deriving from the in-phase part of the accumulated charge density, sets

the fluid into motion. So I defined σ(eff)a to be proportional to the SM part of

Eq. (5.20), ρ+ = −σ(eff)a E
√
2iqn(0)z . In the stationary case, the non-oscillating part

−σ(eff)a E
2
π2iqn(0)z of the volume force is balanced by the viscous forces of the rotating

fluid which can be written as η(eff)z q2v(0)z thus defining η(eff)z . The velocity gradients

of the fluid lead via the rotational viscosities to a torque onto the director which

I wrote as −a2q2v(0)z defining a2. For α3 = 0 (a2 = −α2), and with the Fourier

and Galerkin approximations, this is just the contribution α2q
2vz in Eq. (5.5). With

v(0)z = −σ(eff)a π2E
2
iqn(0)z /(η(eff)z q2), this contribution is equal to Eq. (5.36) with η(eff)

substituted by η(eff)z . In addition, the total destabilizing Carr-Helfrich contribution

(5.36) of the torque contains the Fourier and Galerkin approximations of the cou-

pling term −K̂zypny in Eq. (5.5). This term can be put formally into the definition

of η(eff) leading to the difference between η(eff) and η(eff)z .

The fact that only the in-phase part of ρ is relevant, leads to the denominator

(1 + ω′2) in Eq. (5.23) for σ(eff)a making the Carr-Helfrich effect less effective for

increasing external frequencies (η(eff) in Fig. 5.1). On the other hand, the effec-

tive viscosity decreases monotonically with increasing q (Fig. 5.2) approaching the

asymptotic value η1 = (α4 + α5 − α2)/2 for q → ∞ and making this aspect of the

Carr-Helfrich mechanism more effective for large wave numbers. 2 This explains

the increase of the critical wavenumber qc with increasing ω0, and the existence of

a ”cutoff frequency” for εa < 0. On increasing ω0, the strength of the Carr-Helfrich

effect decreases due to the decrease of σ(eff)a ; to overcome the stabilizing and essen-

tially q and ω0 independent dielectric effect (ε(eff)a in Fig. 5.1), qc increases with

increasing ω0. The effective viscosity, however, remains finite for q →∞. As a result

there exists, for εa < 0, a finite cutoff frequency ωcutoff [45], where the Carr-Helfrich

mechanism cannot overcome the dielectric force even for q → ∞ and where RSMc
diverges for the conductive mode. For a discussion, see, e.g., Ref. [48].

In general, η(eff) decreases with the roll angle arctan(p/q) for constant q (Fig.

5.2) while the behaviour of σ(eff)a depends on the external frequency. For low (high)

external frequencies, σ(eff)a increases (decreases) favouring oblique (normal) rolls, see

Fig. 5.1. For some NLCs (I 52, but not MBBA), the product of the restoring forces

K(eff) η(eff) has a minimum for nonzero pc (Fig. 5.3). In I 52, this leads to oblique

rolls except for very high frequencies where σ(eff)a strongly favours normal rolls.

2For a negative Miesowicz coefficient η2 = (α3+α4+α6)/2, the effective viscosity would become

negative for q values smaller than some qmin. Note, however, that positive definiteness of the

entropy production (2.17) leads to the Miescowicz coefficient η2 > 0 [58] and forbids this unphysical

behaviour.
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For q = 0, Eq. (5.21) becomes RSM0 = K(eff) /εa which is positive (i.e. corresponds

to a threshold) for εa > 0. Usually, the effective restoring force K (eff) increases with

p and the minimum of RSM0 (q = 0, p) lies at p = 0 corresponding to the usual

Fréedericksz effect. If the value of the twist module is extremely low, K22/K33 <

0.298, 3 the minima of K(eff) (q = 0, p) and of RSM0 (q = 0, p) are at a nonzero wave

number p corresponding to the ”periodic splay-twist transition”, as decsribed e.g.,

in Ref. [48].

5.4 Charge separation mechanism and

Hopf frequency

5.4.1 Coupled equations for the director bend

and the charge-carrier density

As in Chapter 5.3, I substituted the adiabatically eliminated φ+, Eq. (5.20), and

the adiabatically eliminated velocities, Eqs. (5.18) and (5.19), into the Galerkin

projection of the linear basic equations (5.4), (5.5) and (5.6), but this time I retain

the amplitude σ(0) of the charge-carrier-density mode. This leads to a 3×3 eigenvalue

system for the linear growth rate λ with the eigenvector
(

σ(0), n(0)z , n(0)y
)

which is given

explicitly in the Appendix A.3.

Near threshold, where the reduced control parameter

ε =
R

Rc

− 1 (5.37)

satisfies ε << 1, this system can be further reduced systematically to a 2× 2 normal

form for the amplitude An(t) of the SM mode and the amplitude Aσ(t) of the charge-

carrier mode (see Appendix A.3),

∂tAσ = λσ(R)Aσ − α̃2Rσ(eff)a An,

∂tAn = R

σ
(eff)
a

(

C
1+ω′2

)2
Aσ + λn(R)An.

(5.38)

The critical SM mode An(t) is the amplitude of the director bend with a small

admixture of twist,
(

iqnz(z, t)

qny(z, t)

)

=

(

cos z

αn sin 2z

)

An(t), (5.39)

3This value is the result for the Galerkin approximations. The problem is exactly solvable with

the result K22/K33 < (β
2

0
+ β0)

1/2 − β0 = 0.303 with β0 = π2/8− 1 [96].
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where αn = in(0)z /n(0)y is given by the eigenvector of the 3 × 3 system (A.5) - (A.7).

The charge-carrier mode is given by

σ(z, t) = Aσ(t) sin z. (5.40)

Neglecting some small terms ∝ α3p, the growth rates λσ and λn of the charge-carrier

and SM modes, and the coupling coefficient C, are given by 4

λσ = −
(

r̃ +
α̃2Rεq

σq(1 + ω′2)

)

≈ −r̃, (5.41)

λn =
ε

τ SM0
, (5.42)

C2 =
Kzz

K(eff) |λ0z|τ SM0

(

C2
z +

p2Kzyλ0z
q2Kzzλ0y

C2
y

)

, (5.43)

C2
z =

σaε
2
q|λ0z|

σ2qη
(eff)
z Kzz

(

1− εa
εq

σq
σa

)(

a2 −
εaq

2η(eff)z

εq

)

, (5.44)

C2
y =

σaε
2
q|λ0y|

σ2qη
(eff)
z Kyy

(

1− εa
εq

σq
σa

)

ηzy
ηyy

a′2, (5.45)

and the zero-field growth rates λ0z and λ0y are given by

λ0z = −
Kzzη

(eff)
z

η
(eff)
z − a22

, λ0y = −
Kyyη

(eff)
z

η
(eff)
z

(

1− a
′2
2

ηyy

)

− p2

q2
η2zy
η2yy
a
′2
2

. (5.46)

For normal rolls K(eff) = Kzz and τ
SM
0 = −1/λ0z so that C2 = C2

z is equivalent to the

normal-roll expression in Ref [92], if one identifies η(eff)z with 1/Lnn.
5 The question

may arise whether the denominators proportional to (η(eff)z − a22) in the growth rate

λ0z (and thus in C2
z ) can become zero or negative leading to unphysical results.

This question is most critical for q → ∞ and p = 0 (Fig. 5.2), where, in physical

units, η1 > α22/γ1 is required to avoid unphysical results. It can be shown that

the requirement of a positive fluid contribution −TD
ij ∂jvi of the entropy production

(2.17) leads indeed to η1 > α22/γ1
6

4Due to a different scaling of the voltages and the time, the definition of C differs from that

used in the Refs. [92] and [42] by a factor of (σa/σ
eq
⊥
)1/2.

5There is a printing error in Eq. (38) of Ref. [92]. The factor (1− εa

εq

Lnnq
2) should be replaced

by (Lnn − εa

εq

q2).
6The contribution η1 − α2

2
/γ1 is sometimes called η3, e.g., in Ref. [58].
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Figure 5.4 Sketch of
the spatial distribution of
the physical quantities inside
the nematic layer (conductive
regime). The straight arrows
indicate the contributions to
the current carried by each
species. The shading illus-
trates the charge-carrier mode
(dark = σ high, light = σ
low).

5.4.2 The dynamics of the charge-carrier mode

The charge-separation mechanism of the WEM leading for low recombination rates

to a nonzero Hopf frequency, can be explained essentially with the help of Fig. 5.4,

Eq. (5.20) for the adiabatically eliminated charge density, and the 2 × 2 system

(5.38). Like the Carr-Helfrich effect, this mechanism is active also for DC.

Consider E0 > 0 and a region in the cell where the director bend An is negative

which is connected by Eqs. (5.20) and (5.39) to a positive SM part of the charge

density (left side of upper picture in Fig. 5.4). For z > 0, the gradient of the density

of the upwards drifting positive carriers is negative and that of the downwards drifting

negative carriers is positive. Migration of both species leads, for z > 0, to an increase

in the total number density σ(r, t) of the carriers, illustrated by the shading (dark

corresponds to a high density). The sign of the effect (accumulation or depletion

of the carriers) depends on the signs of ∂zρ and E0. This means, in the conductive
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regime, that the excited charge-carrier density mode σ(r, t) is antisymmetric in z

and does not follow the external oscillations in the lowest-order Fourier expansion

in t (compare the upper and lower part of Fig. 5.4). This justifies the ansatz (5.15)

for the σ mode and Eq. (5.40) for the amplitude Aσ. Within the ansatz (5.15), the

driving force for the Aσ mode is proportional to ρ+, ∂tAσ = α̃2π2Eρ+/
√
2. The SM

part of Eq. (5.20) for the adiabatically eliminated ρ+ leads to the term −α̃2Rσ(eff)a An

in the upper line of Eq. (5.38). The WEM part leads to the part ∝ α̃2 in Eq. (5.41)

for the relaxation of the σ mode.

The stabilizing feedback of the Aσ mode on the charge density and on An is

mediated, in the basic equation (5.4), by the WEM part Ez∂zσ of the divergence of

the current. Together with the relaxational part it decreases the accumulated charge.

With adiabatically eliminated charge density and velocities, this is equivalent to a

decrease of all SM fields, and the WEM part of ∇ · J leads to the first term in

the equation for ∂tAn. This term is positive, but since the director bend An is

proportional to −ρ+, the feedback is indeed negative, i.e., stabilizing. It leads to

a nonzero Hopf frequency, provided the Aσ mode can build up sufficiently, i.e. the

relaxation of the σ mode is sufficiently slow. 7

5.4.3 Hopf frequency and threshold shift

The growth rates of modes ∝ eλt in (5.38) are given by

λ =
λσ + λn

2
±
√

(λn − λσ)2

4
− ω̃2 (5.47)

with

ω̃ =
Rcα̃C

1 + ω′2 . (5.48)

The condition for a Hopf bifurcation at threshold (Reλ = 0, Imλ = ±ωH 6= 0) are

λn = −λσ and |λσ| < ω̃ which sets an upper bound on the recombination rate. The

resulting Hopf frequency is

ωH = ω̃

√

√

√

√1−
(

λσ
ω̃

)2

≈ ω̃

√

1−
(

r̃

ω̃

)2

, (5.49)

7To put it anthropomorphically for normal rolls: If the Aσ mode builds up sufficiently, it is

more advantageous for the Carr-Helfrich mechanism if the SM fields were shifted to the left or to

the right. The travelling velocity (proportional to the Hopf frequency) is determined by the rate

at which the Aσ mode can build up at the new location. This rate is proportional to α̃.
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Figure 5.5 Plot of Eq.(5.43) for the coupling factor C in the 2 × 2 equations (5.38). (a)
is for MBBA parameters and pc = 0. The dots on the curve give, for ω0τq = 0, 1.0, 1.5,
and 2, the actual value of qc where C is calculated. The three curves in (b) are for I 52
at 30◦C with pc values corresponding to ω0τq = 0, 1.25, and with pc = 0 corresponding
to ω0τq > 2.0. The kink at the Lifshitz point ωlifτq = 2.0 in the dashed trajectory in (b)
translates into a kink in the curves for the Hopf frequency in Fig 5.11a). The slope ∂C

∂q is

the main contribution to the group velocity ∂ω
∂q .



Hopf frequency 63

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

MBBA I 
r  = 1 

(µ+ µ−)1/2  = 10 
5 

2 
1 

ω0 τq  

f Η
  (

 s
-1

)   

0.1 

Figure 5.6 Hopf frequency fH = (2π)−1ωH in physical units, Eq. (5.53), as a function
of the external frequency for the parameter set of MBBA I with σ⊥ = 10−8(Ωm)−1 and
d = 13 µm (as in Ref. [39]), and an assumed recombination rate of τrec = τd (i.e., r̃ = 1).
Parameter is the geometric mean of the mobilities with the values, from left to right,

10, 5, 2, 1, 0.5, 0.2, and 0.1 in units of 10−10m2/(Vs). For other values of d, σ⊥,
√

µ+⊥µ−
⊥,

and τrec, the form of the curves (especially the codimension-two point where ωH → 0)

scales with τrecω̃
phys ∝ α̃/r̃ ∝

√

µ+⊥µ−
⊥τrec/(

√
σ⊥d3), and the Hopf frequency scales with

√

µ+⊥µ−
⊥/(
√
σ⊥d3).
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and the condition λn = −λσ leads to a threshold shift

∆ε ≡ Rc

RSMc
− 1 =







|λσ|τ SM0 ≈ r̃τ SM0 |λσ| ≤ ω̃
ω̃2τSM0
|λσ | ≈

ω̃2τSM0
r̃

|λσ| > ω̃
, (5.50)

where all quantities are taken at threshold. The only source for a shift of the wave

vector with repect to the SM model lies in the q dependence of λσ which is pro-

portional to α̃2 and extremely small, in accordance with experiments [39], see also

Chapter 6.3.3.

The approximations in the Eqs. (5.49) and (5.50) are valid for Rcα̃
2/(1+ω′2) <<

r̃. For the I 52 experiments, Rcα̃
2/(1 + ω′2) is of the order of 0.01 or smaller and ω̃

is of the order of 0.2; so there exists a fairly large range where this approximation is

fulfilled.

For εa = α3 = p = 0, the expression (5.48) for ω̃ simplifies to

ω̃τ SM0 = α̃
√

(ηzz − 1)/σa. (5.51)

5.4.4 Dependence on the system parameters

The Equations (5.48) – (5.50) are the main analytic result of this Chapter. Apart

from the SM parameters, they contain the mobility parameter α̃ and the recombi-

nation rate r̃ in units of the inverse director relaxation time. In physical units, the

Eqs. (5.48) and (5.49) read (in the approximation λσ ≈ −r̃)

ω̃phys = πC
ε0ε⊥
d3

V
2

1 + ω′2

√

√

√

√

µ+⊥µ
−
⊥

γ1σ
eq
a
, (5.52)

ωphysH = ω̃phys
√

1− 1

(τrecω̃phys)2
. (5.53)

while Eq. (5.50) is valid for physical units as well. This implies the following pre-

dictions.

• The Hopf condition scales with d−3(σeq⊥ )−1/2. This means, that a Hopf bifur-

cation is favoured for thin cells and low conductivities, i.e. for clean materials

and/or low temperatures. If the condition is (fairly) well satisfied, the Hopf

frequency scales with d−3(σeq⊥ )−1/2 as well.

• If the Hopf condition is well satisfied, the Hopf frequency ωH ≈ ω̃ depends only

on one combination of non-SM parameters ,
√

µ+⊥µ
−
⊥, and this dependence is of

a simple multiplicative form. Actually, as shown in the inset of Fig. 5.8, the
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influence of the recombination can be neglected (i.e. the Hopf condition is ”well

satisfied”) if r̃ is smaller than about half the Hopf frequency for zero external

frequency. One could, at least in principle and when the SM parameters are

known, ”measure” the geometric mean of the mobilities by measuring the Hopf

frequency.

• The function ω̃(ω0) is proportional to C(q(ω0))Rc(ω0)/(1+ω
′2), a fixed function

for a given NLC at a given temperature containing only SM parameters. The

dependence on C is rather weak, so the behaviour of ω̃ with ω0 is primarily

determined by the factor Rc/(1+ω
′2). This factor is nearly constant for εa = 0

(compare Eq. (5.21) with Rc ≈ RSMc ), but increases (decreases) with ω0 for

εa < 0 (εa > 0). For εa = α3 = p = 0, Eq. (5.51) implies that ω̃, in units of the

zero-field relaxation rate (τ SM0 )−1 of the director, is equal to α̃
√

σ⊥/σa times a

factor of the order of unity (see Fig. 5.2). This order-of-magnitude estimate

remains valid for nonzero values of εa, α3, and p.

• The threshold shift increases with r̃ to a maximum of ∆ε = τ SM0 ω̃ at the

codimension-two point (|λσ| = ω̃) of travelling rolls and stationary rolls (∆ε ≈
3 % for I 52.) For higher r̃ (stationary-roll regime), the shift ∆ε = τ SM0 ω̃2/r̃

decreases and goes to zero in the SM limit r̃ →∞.

5.5 Comparison with experiments

5.5.1 Travelling normal rolls in MBBA

Travelling rolls in MBBA were observed e.g., in [40, 41, 97, 98]. The advantage of

MBBA for testing the WEM is the fact that all SM parameters are known and there

exist also some reported data for the mobilities (Table 3.1). In this subsection I test

the WEM on the results of Rehberg, Rasenat, and Steinberg [41]. The thickness of

the cell was d = 15 µm and the cutoff frequency at about 450 Hz corresponds to

σ⊥ = 4 × 10−8(Ωm)−1. Their Fig. 4, containing the results of the Hopf-frequency

measurements, is reproduced here as Fig. 5.7 (Courtesy of I. Rehberg). Travelling

waves were observed for all frequencies. Comparison with the inset of Fig. 5.8

suggests that the unknown recombination rate is sufficiently small (r̃ < 0.3 or τ−1rec <

0.3τ−1d ) to assume ωH = ω̃. Another experiment described in Chapter 6 [39] leads

to the stronger condition r̃ < 0.1 (τrec > 3s), and supports this assumption. At

f0 =190 Hz (ω0τq = 1.1), the measured Hopf frequency ωH/(2π) was 0.345 Hz.
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Figure 5.7 Experimental results for a 15 µm cell of MBBA for the Hopf frequency
(crosses) and the threshold voltage (solid diamonds for the conductive regime and open
diamonds for the dielectric regime). The figure is taken from Ref. [41] (Courtesy of I.
Rehberg).

Fitting
√

µ+⊥µ
−
⊥ in the WEM prediction (5.52) leads (at 25◦C) to

√

µ+⊥µ
−
⊥
(MBBA)

= 1.6× 10−10m2/(Vs), (5.54)

consistent with the values given in Table 3.1.

Figure 5.8 shows the WEM prediction for the Hopf frequency as function of

the external frequency for the above mobilities and a vanishing recombination rate.

The comparison with the measured values of Fig. 5.7 shows nearly a quantitative

agreement. Note, that once
√

µ+⊥µ
−
⊥ is fixed, all other points of the theoretical curve

are determined by the known SM parameters (Appendix A.1).

5.5.2 Travelling oblique rolls in I 52

The NLC I 52 is more stable than MBBA and the drift in time of the material pa-

rameters (especially the conductivity) is slow compared to MBBA or Phase 5 [78].

This enables quantitative measurements at different temperatures. Since σ⊥, the
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Figure 5.8 Hopf frequency (solid lines) and threshold voltage (dashed) as function of
the external frequency for a MBBA cell with the parameters of Ref. [41] (parameter set
MBBA I, Appendix A.1 with σ⊥ = 4 × 10−8(Ωm)−1 and d = 15 µm ), to be compared
with Fig. 5.7. Shown is the whole conductive regime. The experimental crossover to
the dielectric mode at V c ≈ 80V is shown schematically as dash-pointed line (it is not
calculated). The scaled frequency ω0τq = 1.1 (vertical arrow) corresponds in physical units
to about 190 Hz (vertical arrow in Fig. 5.7). In the main plot, a negligible recombination
rate (in fact r̃ < 0.3), is assumed and the geometric mean of the mobility is fitted to the
measured Hopf frequency [41] of 0.34 Hz at ω0/2π = 190 Hz (ω0τq = 1.1) with the result
(µ+⊥µ−

⊥)
1/2 = 1.6 × 10−10m2/(Vs). The inset shows the effect of a nonzero recombination

while the other parameters are unchanged. The recombination parameter is, from left to
right, r̃ = 0.3, 0.5, 0.7, 1, 2, 5, and 10. The curve for r̃ = 0.3 can be hardly distinguished
from that for r̃ = 0.
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Figure 5.9 Threhold voltage V c and an-
gle Θ of the wavevector with respect to
the director, as a function of the dimen-
sionless applied frequency ω0τq for the I 52
experiments of Ref. [42]. (a) V c for
T = 30◦C (circles, solid line) and 45◦C
(diamonds, dashed line). The symbols
(lines) are the experimental (theoretical)
result. The ω0τq → 0 limit is used to
determine the temperature dependence of
σa/σ⊥, given in the Appendix (A.1). (b)
Θ for T = 45◦C. The temperature depen-
dence of Θ is relatively weak.

viscosities, and εa have a rather strong temperature dependence, one obtaines qual-

itatively different Hopf-frequency curves (as function of the external frequency) for

different temperatures. Provided that the temperature dependence of the material

parameters is known, one can test the WEM on several curves without introducing

new unknown parameters.

The experiments were performed by Dennin, Ahlers, and Cannell with cells of

28 µm and 57 µm thickness for six different temperatures [42, 30, 31]. In contrast to

MBBA, the bifurcation is to oblique rolls, apart from very high external frequencies

(Fig. 5.9). Unfortunately, the relative conductivity anisotropy σa(T )/σ⊥(T ), two
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Figure 5.10 ωHσ1/2d3 as a function of
ω0τq for one cell of thickness d = 28 µm
and σ⊥ = 8.5 × 10−9 ohm−1m−1 (trian-
gles) and one with d = 57 µm and σ⊥ =
1.1×10−8 ohm−1m−1 (circles) taken from
Ref. [42]. Both cells were at T = 50◦C.
For high frequencies the data scale as pre-
dicted by the WEM: ωH ∝ σ−1/2d−3. The
sharp decrease in ωH as ω0 is decreased
for the thicker cell is predicted by the
WEM and fixes the unknown recombina-
tion rate.



Comparison with experiments 69

0.5

1

1.5

ω
 (

se
c-1

)

Figure 2, Dennin, et al.

(a)

Fig. 2  Dennin, et al.

0.4

0.5

0.6

ω
 (

se
c-1

)

(b)

0 0.5 1 1.5 2 2.5

Ωτq

0

0.5

1

ω
 σ

1/
2  d

3   x
 1

018 (c)

 

ω0 τq 

0            0.5            1            1.5            2             2.5 

Ι 52 

Η
 

Η
 

Figure 5.11 Measured and calculated val-
ues of the Hopf frequency ωH as a func-
tion of ω0τq. (a) is for T = 30 (circles),
35 (squares), and 40◦C (triangles). (b)
is for T = 45 (diamonds), 50 (triangles),
and 60◦C (circles). The corresponding re-
sults for the WEM model are shown by
the solid lines. In both (a) and (b), the
abrupt change of slope in the theoretical
curves corresponds to the Lifshitz point.

elastic constants, and three viscosities, are not known for I 52. They were fitted to

the threshold curves and the curves of the roll angle for all six temperatures. Typical

examples of the fits are shown in Fig. 5.9.

Eq. (5.52) predicts ω̃ ∝ σ
−1/2
⊥ d−3. If ω̃ > 2|λσ|, this is approximately valid

for the Hopf frequency as well. Figure 5.10 compares results from the 28 µm cell

with that from a 57 µm thick cell of slightly different conductivity, both at 50◦C.

We find the expected scaling with d for high values of ω0 where, indeed, ω̃ > 2|λσ|
(which can be shown a posteriori after determining λσ). While σ

1/2
⊥ d3 differs by a

factor of 9.6 between the two cells, the product ωHσ
1/2
⊥ d3 differs by less than 10

% for high values of ω0. The relaxation rate τ−1rec can be found with the help of

Eq. (5.53) by identifying for the thick cell (index 1) τ−1rec,1 = ω̃phys1 at the external

frequency where the Hopf frequency goes to zero (ω0τq = 0.7 in Fig. 5.10). Since

ωphysH,2 ≈ ω̃phys2 = 9.6ω̃phys1 for the thin cell (index 2), the recombination rate can be

determined by measuring the Hopf frequency of the thinner cell at the same scaled

external frequency, τrec = 1/ω̃phys1 = 9.6/ω̃phys2 ≈ 20s. Presumably, the recombination

rate does depend only on the temperature and not on the cell thickness, so this is

the recombination rate for both cells.

Fig. 5.11 shows the measured and predicted Hopf frequencies for a thin d = 28 µm

cell as function of the external frequency with six temperatures as parameter. The

relaxation time calculated above corresponds to ω̃/|λσ| > 3 for any temperature and

external frequency, so the theoretical ωH ≈ ω̃ is computed using Eq. (5.53) with only

one adjustable parameter,
√

µ+⊥µ
−
⊥, for each temperature. The fitted values increased
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monotonically with T and were all in the range (see Table A.2)

√

µ+⊥µ
−
⊥
(I52)

= (0.40...0.47)× 10−10m2/(Vs), (5.55)

The discrepancy (up to 15%) at the lower temperatures (Fig. 5.11a) is related pri-

marily to experimental uncertainties in the very small measured conductivity. For

most of the data, experiment and theory agree to within 5% of ωH .

The WEM captures a number of features of the experiment which are independent

of the uncertainties in the material parameters. Both in the model and the experi-

ment, the ω0 dependence of ωH is determined mostly by εa. For εa < 0 (T < 60◦C),

ωH increases with ω0, and for εa ≈ 0 (T = 60◦C), it is essentially constant (Fig. 5.11).

In addition, the model predicts ωH ∝ σ
−1/2
⊥ d−3. The correct dependence on temper-

ature in Fig. 5.11 reflects the σ
−1/2
⊥ scaling. Note that σ⊥ varies by a factor of 5 over

the temperature range 30◦C ≤ T ≤ 60◦C. Fig. 5.10 shows the correct d−3 scaling

for two cells with a ratio of d3 of about 8. The decrease of ωH to zero for the thicker

cells is predicted by the WEM as well. It fixes the recombination rate. Since, to

my knowledge, there are no independent quantitative measurements of τrec, this last

aspect can be considered only as a qualitative agreement. Further work is needed to

test the theory in this regime since (in contrast to MBBA) an extremely fine tuning

of τrec is required to match the experiment. This is the result of the nearly vanishing

dielectric anisotropy.

5.6 Comparison with other systems showing a

Hopf bifurcation

I rely on intuition

A. Einstein

A characteristic feature of the WEM is the interplay between a primary instability

mechanism and a slower stabilizing mechanism as shown in the top row of Fig.

5.12. A negative director bend −iqδnz leads via σ(eff)a to a charge accumulation

δρ and to an electric volume force driving the fluid motion δv. The orientational

viscosities close the destabilizing feedback loop by coupling back velocity gradients

to the director bend. The gradients of the charge accumulation, however, excite also

the charge-carrier mode whose feedback tends to decrease the charge. This second

mechanism is only relevant if the σ mode can build up, i.e., the relaxation of this

mode (symbolically shown by the arrow with the broken line in the diagram in the

top row of Fig. 5.12) is slow.
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As shown in Fig. 5.12 for three systems of thermal convection, this interplay

seems to be a common scenario for generating travelling waves by a Hopf bifurcation

The primary destabilizing mechanism in all three systems is that of the ”classical”

Rayleigh–Bénard convection for isotropic one-component fluids. The buoyancy force

of a volume element of hotter fluid (δθ > 0) acts as driving force for the fluid motion

δv which, in turn, advects this element into colder regions thus increasing the relative

temperature difference and the buoyancy force.

In thermal convection in a homeotropically aligned NLC cell (second row in Fig.

5.12), the fluid motion excites, in addition, a director distortion δnx. If the anisotropy

of the thermal conductivity is positive (which is nearly always the case), this leads

to a positive divergence of the thermal heat flux in the warmer region, i.e., to a

cooling of this region corresponding to a stabilizing feedback [99, 61]. The relaxation

time of the director is larger than that of the fluid and the temperature by factors of

τvisc/τd ≈ 106, and Pτvisc/τd, respectively (P is the Prandtl number and τd is defined

analogously as in the planar geometry).

In the ”thermohaline” convection experiments in salt water (third row in Fig.

5.12), the BC are such that in the basic state, besides the imposed temperature

gradient, there is a gradient of the salt concentration with a higher salt concentration

near the bottom [100]. So, the fluid element is not only transported into colder

regions increasing the relative temperature difference and the buoyancy caused by

thermal expansion, but also transported to regions of a lower salt concentration

increasing the relative salt concentration and leading to a negative contribution of

the buoyancy (the density of the fluid increases with the salt concentration). The

time scale of the concentration field is set by the molecular diffusion time τD = d2/D

of the salt concentration (where D is the diffusion coefficient), which is very long

compared to other time scales (note that neglect of molecular diffusion, as done in

this chapter for the charge carriers, corresponds to an infinitely long diffusion time).

At last, the bottom row of Fig. 5.12 shows thermal convection in a binary mixture

of fluids for the case where the Soret effect leads to a negative separation ratio

ψ [22, 54, 9], i.e., temperature inhomogenities induce a mass flux ∝ ψ∇T of the

more dense component, which is directed towards the warmer regions. The BC of

impenetrable walls together with the imposed temperature gradient lead in the basic

state to a linear concentration profile where the concentration of the heavier fluid

component decreases with z. The stabilizing concentration mode [101] is excited in

two ways, i) by advection through the concentration gradient of the basic state, as

in the thermohaline system; ii) directly by the Soret effect where the temperature

inhomogeneity of the linear mode induces a flux of the more dense component into
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the warmer regions. The time scale of the concentration mode is governed by the

concentration diffusion time τD, related to the thermal diffusion time τth = d2/κ (κ is

the thermal diffusion coefficient) by the ”Lewis number” L = τth/τD which is ≈ 10−2

or smaller for liquid mixtures.

The parameters −ψ and L are, in some way, the analog of α̃ and r̃ in the WEM.

The excitation of the concentration mode (of the WEM carrier density mode) is

proportional to −ψ (α̃2), while its relaxation is proportional to L (r̃). A Hopf

bifurcation occurs if
√
−ψ > c1L (α̃ > c2r̃) with c1, c2 of the order of unity, and if

the condition is well satisfied (and
√
−ψ <≈ 0.3), the Hopf frequency is ∝

√
−ψ

(∝ α̃); see, e.g., Fig. 5.2. in Ref. [9] for binary mixtures. In contrast to the

WEM, the interesting parameter ranges near the codimension-two curve or near the

tricritical curve are, at least for usual liquid mixtures, extemely narrow (typically,

0 > ψ ≥ −10−4) and therefore experimentally hard to attain.
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Chapter 6

Weakly nonlinear analysis

Never I encountered a problem which did not become more com-

plicated on careful examination

P. Anderson

The linear analysis of the WEM presented in the previous chapter predicts a thresh-

old shift with respect to the SM and, for sufficiently low recombination rates, a

Hopf bifurcation to travelling rolls. Further questions can be treated at the weakly-

nonlinear level. Is the bifurcation continuous (forward) or hysteretic (backward)? If

it is forward, which combinations of degenerate linear modes will be selected by the

dynamics? For instances, for a Hopf bifurcation, the dynamics can select travelling

waves or standing waves, i.e., a superposition of left and right travelling waves. In

the oblique-roll regime, isolated regions of ”zig” or ”zag” modes, or a superposition

of both, can be favoured; for travelling oblique waves there are even more possibil-

ities. Furthermore, how does the frequency of the travelling waves depend on the

reduced control parameter ε = R/Rc − 1? Finally, can the observation of chaos at

onset [30, 31] be explained within the framework of the weakly-nonlinear analysis?

If the bifurcation is hysteretic, there is the question of the amplitude and of the

type (e.g., stationary or oscillatory) of the nonlinear final state, and of the range

of the control parameters where hysteresis effects take place. Upon decreasing the

control parameter, when does the system jump back to the unstructured state?

The basic idea of the weakly-nonlinear analysis [1, 102, 103] is to reduce the

phase space of the system to that of the slowly relaxing ”dynamically active” modes.

The remaining fast degrees of freedom are ”slaved” [1] to these modes. This idea

uses the fact that, if one starts with general initial conditions (with a general point

in the phase space of the system), the state in phase space will approach on a fast

time scale the subspace spanned by the slowly relaxing degrees of freedom, and the
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subsequent dynamics will take place on this subspace. For recent reviews see, e.g.,

[9, 50, 24] or [104].

The (still infinitely dimensional) set of these dynamically active degrees of free-

dom can be constructed from modes on the same dispersion branches as the critical

modes, with wave vectors close to the critical wave vectors. In addition, this set may

contain slowly relaxing modes generated by the nonlinearities.

In Chapter 6.1, I discuss the Ginzburg–Landau approach and give the (uncoupled)

complex Ginzburg–Landau equation (CGL) for the WEM in the special case of a

one-dimensional dynamics of left-travelling waves (LTW) (or, equivalently, right-

travelling waves).

Chapter 6.2 gives analytic expressions for the coefficients of this CGL. Rather

than providing quantitative numerical results, the goal is a qualitative (at most semi-

quantitative) understanding of the nonlinear behaviour of the WEM. In particular,

the intricate influence of the WEM mobility parameter α̃ and the recombination

parameter r̃ on the dynamics will be elucidated by means of analytic expressions

containing explicitely these parameters.

In Chapter 6.3, I summarize the weakly-nonlinear results of the WEM by phase

diagrams in the WEM parameter space (α̃, r̃) and by an expression for the change

of the oscillation frequency with the control parameter in the Hopf regime. The

predictions are compared with experiments on MBBA and I 52. Furthermore, I give

estimates for the nonlinear amplitude in the stationary-hysteretic regime assuming

no WEM effects in the nonlinear state. Most results agree, within factors of about

two with the experiments.

Chapter 6.4 gives a discussion of the weakly-nonlinear results.

6.1 Ginzburg-Landau equations for the WEM

With at most discrete degeneration of the critical mode, the near-threshold dynam-

ics can be described, for a continuous bifurcation, by a set of third-order coupled

Ginzburg–Landau equations (CCGL) for the envelopes (or amplitudes) Am(x, y, t)

of wave packets with wave vectors near that of the mth mode in the set of the de-

generated critical modes. For oblique travelling rolls, this involves a total of four

amplitudes for the modes of the right and left-travelling ”zig” and ”zag” rolls. For a

hysteretic bifurcation, one needs at least fifth-order CCGLs with a stabilizing fifth-

order term to counteract the destabilizing third-order contribution.

For simplicity, I restrict the treatment to one lateral dimension, x, and to modes

near the critical mode ∝ ei(q·x+ωt) for left-travelling waves (LTW) leading to a one-
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dimensional uncoupled CGL. Some relevant experimental results (especially those for

I 52 [30, 31]) are for the regime of oblique rolls and the weakly-nonlinear description

for, say, the wave packet of the LTWs with pc > 0, would require a two-dimensional

CGL. Nevertheless, one can expect that, like qc and ωH in the linear regime, many

weakly-nonlinear aspects of the oblique-roll regime can be described, at least semi-

quantitatively, by dropping the y dependence. 1

Restricting to left-travelling rolls (and to p > 0 for oblique rolls), the set of

slowly-relaxing modes can be represented as a wave packet with wave vectors around

that of the critical LTW,

u = u(1) + higher order terms,

u(1) = A(x, t)ũ(z, ω0t)e
i[qc·x+ω(qc,ε)t] + c.c. (6.1)

The complex amplitude A(x, t) varies slowly in x, y and in time but the y dependence

will be dropped. The spatial variation eiqc·x of the critical mode and its frequency

(the imaginary part of the linear growth rate) at q = qc and at the actual value of

the control parameter is separated out. The function ũ is the Floquet function, Eq.

(5.14), for the LTW at threshold and contains the z dependence and the periodicity

with the external field. Within the lowest-order Floquet and Galerkin expansions,

ũ is given by Eq. (5.15) where (σ(0), φ+, φ−, n(0)z , · · ·) is the eigenvector composed of

the Galerkin coefficients, given by Eq. (5.17) for q = qc, R = Rc, and λ = iωH . For

quantitative statements about nonlinear (or stochastic) properties, the normalization

of the eigenfunctions is important. It is chosen such that |A| gives directly the

maximum director angle arctan(nz) ≈ nz at z = 0, which can be measured directly

by the shadowgraph method [105],

nz(r, t) = |A(x, t)| cos z cos[qc · x+ ω(ε, qc)t+ φA] (6.2)

with φA = arg(A). For the coefficients of the one-mode expansion (5.15), this corre-

sponds to n(0)z = (π/8)1/2.

The form of the amplitude equation is determined completely by symmetry con-

straints [9],

τ0(∂t − vg∂x)A = [ε+ ξ20(1 + ib)∂2x]A− g(1 + ic)|A|2A. (6.3)

There are several ways to derive the coefficients. These include the introduction

of multiple scales and a subsequent systematic expansion, or the use of ”order-

parameter equations in q space together with projection techniques employing the

”slaving principle” [1].

1The nonlinear selection of the zig and zag modes, of course, cannot be described by this

approximation.
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The multiscale approach was first applied to RBC in simple fluids [102]. Other

systems include, e.g., lasers [106] or EHC [48]. For reviews see, e.g., [104, 24, 10].

The order-parameter approach has been applied, e.g., for thermal convection in

simple fluids [103], thermal convection in homeotropically aligned EHC, [107, 108],

and to EHC [50].

It turns out that the linear coefficients are obtained most easily by using the

projection method which, in this case, reduces to an expansion of the growth rate

around the threshold (Chapter 6.2.1). The nonlinear coefficients g and c can be

calculated easier with the multiple-scale method (Chapter 6.2.2).

6.2 Coefficients of the one-dimensional complex

Ginzburg-Landau equation

In addition to the asumptions made in Chapter 5 (adiabatic elimination of the charge

and the velocities, lowest-order Galerkin and Floquet expansions), I consider external

frequencies satisfying (in physical units) ω0τq << 1 and ω0τd >> 1.

The decisive new nonlinearity of the WEM is the term v ·∇σ associated with

advection of the carrier density, Eq. (3.28). It can be argued that the saturation of

the ±qc modes of all SM fields is not altered by WEM effects. Furthermore, I neglect

the interaction of the σ modes with intermediate modes excited by second-order

SM nonlinearities. This last assumption (whose validity has yet to be investigated)

allows an adiabatic elimination of ρ and v also for the nonlinear case by generalizing

the effective quantities in Eq. (5.38) to allow for an amplitude dependence. 2

With these assumptions, the Eqs. (3.28) and (3.29) can be written as

(

∂t − λ̂σ
)

σ −Rα̃2σ̂(eff)a ∂x∂znz = −(v ·∇)σ

− Rα̃2σ̂(eff)a gSM|A(x, t)|2∂x∂znz, (6.4)

− RĈ2

σ̂
(eff)
a

∂zσ +
(

∂t − λ̂n
)

∂xnz = −gSM|A(x, t)|2
(

∂xnz
τ SM0

+
RĈ2

σ̂
(eff)
a

∂zσ

)

, (6.5)

where gSM = 0.48 for MBBA at ω0τq << 1 and for the normalization (6.2) [48].

The left-hand sides contain the linear terms; the quantities λ̂σ, σ̂
(eff)
a , Ĉ, and λ̂n are

operators which reduce to the corresponding effective quantities λσ, σ
(eff)
a , C and λn

of Chapter 5, if applied to the SM modes. For other modes, they are understood

2This is a standard method in nonlinear optics. If, e.g., in laser-active dielectric materials, the

time scales of the polarization and inversion fields are much shorter than that of the optical field

E, one can introduce an effective dielectric permittivity which is ∝ (1 + g|E|2)−1 [106].
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Table 6.1: Linear coefficients of the Ginzburg Landau
equation in the approximation Rα̃2 << 1

Quantity Hopf range Stationary range

τ0 2
(

1
τSM
0

− Rα̃2εq
σq(1+ω′2)

)−1
≈ 2τ SM0

∗ τ SM0

(

1− ω̃2

λ2
σ

)

1+2τSM
0

ω̃2

λσ

ξ20 ξ20,SM ξ20,SM − (τSM
0
)3ω̃4

τ2

0
λ3
σ

(

∂qC
2

C2

)2 †

b λσ
ωH

+ τSM
0

ξ20,SMωH

(

v2g − ∂q(ω̃∂qω̃)
)∗∗ −−

vg
ω̃∂qω̃
ωH

∗∗ −−
∂ω
∂ε

ω̃2

ωH
+ λσ
2τSM

0
ωH

−−
∗The first expression is without the approximation Rα̃2 << 1
†Approximation ω̃ << 1/τ SM0
∗∗Approximation Rα̃2 << ω̃

as numbers resulting from the Galerkin approximations for the actual modes (see

below). For the Galerkin approximation (5.39) and (5.40) of critical modes, the

left-hand side reduces to Eq. (5.38).

The nonlinear terms are on the right-hand sides. The only second-order nonlin-

earity is the advection term −v ·∇σ in Eq. (6.4). The term ∝ ∂xnz in Eq. (6.5) is

the saturating SM nonlinearity. The other two terms ∝ R describe the saturation of

the coupling from the σ to the nz mode, and vice versa. The coupling is mediated

by the charge density and it can be shown [109], that the saturation of the SM mode

is primarily due to the nonlinearities in the charge focussing effect of the director

bend. So I assume that this coupling saturates like the SM mode.

6.2.1 Linear coefficients

The linear coefficients of the CGL (6.3) can be obtained directly by the projection
method. With the ansatz u = Āq−qc

(t)ũeiω(qc,ε)t, the eigenvalue problem for the
growth rate of the critical branch can be written as

∂tĀk = [λ(qc + k, ε)− iω(qc, ε)] Āk, (6.6)
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where k = q − qc. Taking, in lowest order, the Floquet function ũ at q = qc, an
inverse Fourier transformation of the ansatz back to real space results in Eq. (6.1)
with

∂tA(x, t) = [λ(qc − i∇, ε)− iω(qc, ε)]A(x, t). (6.7)

The linear coefficients of the one-dimensional CGL are obtained in terms of the linear
growth rate by comparing Eq. (6.3) with the Taylor expansion of Eq. (6.7) with
respect to qc − i∂x and ε around q = qc and ε = 0. The result is τ−10 = ∂εσ|c,
vg = ∂qω|c, and ξ20(1 + ib) = − τ0

2
∂2qλ|c, where λ = σ + iω and |c stands for the

critical point q = qc and ε = 0. In addition, one obtains the linear frequency shift,
∆ω := ω(qc, ε)− ωH = ε∂εω|c.

Table 6.1 gives approximate analytic expressions for these coefficients using Eq.
(5.47) for the growth rate, both for the Hopf regime ω̃ > |λσ|, and for the stationary
regime ω̃ < |λσ|, separated by the codimension-two (C2) curve.

The Figures 6.1 and 6.2 show the real and imaginary CGL coefficients for I 52
parameters. Remarkably, the correlation time τ0 in the Hopf regime is nearly twice
the time in both the SM and in the stationary regime not too near to the C2 curve.
This can be seen directly from the real part of the growth rate (5.47) which is
σ = (λσ + λn)/2 in the Hopf regime, while it is σ ≈ λn in the stationary regime
far away from the C2 curve. For most situations, the ε dependence ∝ α̃2 of λσ,
Eq. (5.41), is negligible compared to that of λn. This leads to the factor of 2 in
τ0 = (∂εσ)

−1.
The correlation time goes to zero and the correlation length diverges if one ap-

proaches the C2 curve from the stationary side (Figures 6.1a and 6.1b). This is
caused by the dependence of the square root in Eq. (5.47) on, respectively, ε and
q, together with the divergence of the gradient of the square root at the C2 point.
Approaching the C2 point from the Hopf region, the diverging gradient leads to van-
ishing factors of ωH in the denominators of the expressins for ∂ω

∂ε
, vg, and b, causing

the singularities of these quantities at the C2 point
If the Hopf condition is well satisfied and ω0τq << 1, the group velocity vg ≈

Rcα̃
∂C
∂q
|c has the same sign as the phase velocity ωH/qc of the critical mode; the ratio

vg/(ωH/qc) = C−1 ∂C
∂q
|c, is slightly smaller than 1, both for MBBA and I 52 (Fig.

5.5). For most parameters, the expression for the dispersion coefficient b is mainly
determined by the negative relaxation term λσ/ω̃. For very small recombination
rates or very high mobility parameters, the term ∝ ∂q(ω̃∂qω̃) becomes important; it
is essentially proportional to the negative curvature of C(q), i.e., positive for both
MBBA and I 52 (Fig. 5.5). The divergence of b at the C2 point is due to the v2g
term.
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Figure 6.1 (a)-(c) plots of the real Ginzburg–Landau coefficients τ0 and ξ20 (Table 6.1),
and g (Table 6.2) for I 52 at 45◦C and for ω0τq << 1. The full lines are for the Hopf
regime of travelling waves and the dashed lines for the stationary regime. Parameter is the
mobility parameter α̃, where α̃ = 0.01 · · · 0.04 is the order of magnitude in the MBBA and
I 52 experiments, and α̃ = 0.1 corresponds to very thin cells.
(d) Nonlinear saturation g along the C2 curve approaching the C2 curve from the Hopf
regime (full line) and from the stationary regime (dashed). Several approximations have
been applied in calculating the nonlinear coefficients, see the main text.
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Figure 6.2 (a) linear frequency shift; (c) group velocity, and (b), (d), the imaginary
parameters of the CGL in the Hopf regime for I 52 at 45◦C and for external frequencies
satisfying ω0τq << 1. The linear dispersion b is proportional to ∂2ω

∂q2
, and the nonlinear

frequency shift c is proportional to − ∂ω
∂|A|2 .
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At last, the linear frequency shift is negative, apart from the case of very small
recombination rates or high values of α̃, where the positive term ∝ ω̃2/ωH becomes
the main contribution. This term reflects the dependence of the coupling ω̃ = Rα̃C
on R.

6.2.2 Nonlinear coefficients

Now I derive the saturation coefficient g and the nonlinear frequency shift c of the
CGL (6.3) by a systematic multiple-scale expansion. In this method (a pedagogical
example can be found in Ref. [10]), one starts with the ansatz

u = u(1) + u(2) + u(3) + · · · , (6.8)

where u(1) is given by Eq. (6.1) in terms of the amplitude, and u(i) is of the order
of |A(x, t)|i. Inserting this ansatz into the nonlinear basic equations assuming

O(∂t − vg∂x) = O(∂2x) = O(|A|2) = O(ε) (6.9)

for all derivatives acting onto A, and separating into orders of ε, ε3/2, · · · leads to a
hierarchy of linear inhomogeneous equations of the form L̃u(i) = I(i). The operator

L̃ contains all linear parts of the basic equations; the inhomogenities I (i) are given in
terms of u(i−1) · · ·u(1), calculated already in terms of A and ũ in the previous steps.

These inhomogeneous equations can be solved nontrivially only, if the I (i) are not

in the kernel (null space) of L̃
†
, the operator adjoint to L̃ (Fredholm alternative).

These ”compatibility conditions” determine the amplitude equation to the desired
order.

Now I apply this method to the ”basic equations” (6.4) and (6.5). The solvability
condition at O(ε) leads to ∂tA − ∂ω

∂q
|c∂xA + O(ε3/2) = 0 defining vg = ∂ω

∂q
|c. 3 This

result has been obtained already more directly by the projection technique and will
not be shown explicitely here. 4 The solvability condition at the next order ε3/2

determines the remaining coefficients of the CGL (6.3).
Since I am interested only in the nonlinear parts ∝ |A|2A which are already of

order ε3/2, I neglect all derivatives acting on A (”exact resonance”) and show the
systematic expansion by starting, instead of Eq. (6.1), with the zero-dimensional
ansatz5

u(1) = A(t)ũ(z, ω0t)e
i(qc·x+ωH t) + c.c., (6.10)

ũ(z, ω0t) ≡
(

σ̃
ñz

)

=
1

2

(

σ(0) sin z
cos z

)

; σ(0) =
iqcRcα̃

2σ(eff)a

λσ − iωH

∣

∣

∣

∣

∣

c

. (6.11)

3In stationary pattern-forming systems like RBC or the SM of EHC, the solvability condition
at this order is, usually, fulfilled automatically.

4An example of a nontrivial solvability condition at this order is given, e.g., in Ref. [106].
5This is the usual way to derive normal forms for low-dimensional systems (”Landau equations”)
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The inhomogeneous equations at order ε read
(

∂t − λ̂σ
)

σ(2) −Rα̃2σ̂(eff)a ∂x∂zn
(2)
z = −v(1) ·∇σ(1), (6.12)

− RĈ2

σ̂
(eff)
a

∂zσ
(2) +

(

∂t − λ̂n
)

∂xn
(2)
z = 0. (6.13)

For the Hopf regime, the second-order inhomogeneity is

v(1) ·∇σ(1) =
π(K(eff) )2η(eff) α̃2

8ω̃2

{

(λσ + iωH)A
2e2i(qc·x−ωH t)f1(z) + c.c.

− 2

√

2

π
λσ|A|2∂z [C1(z) sin z]







. (6.14)

The inhomogeneity for a stationary bifurcation is obtained by the substitutions ω̃2 →
λ2σ, and ωH → 0. The function f1(z) = (2/π)1/2[C1(z) cos z−sin z∂zC1(z)] has strong
variations only near the boundaries (it would be equal to 1 for free BC).

This inhomogeneity does not lie in the kernel of the adjoint linear operator and
drives the second-order charge-carrier modes. Solving Eqs. (6.12) and (6.13) with
the BCs ∂zσ

(2) = n(2)z = 0 for quasi-stationary conditions (i.e., the dynamics of the
excited modes is fast compared to that of A), results, in the lowest-order Galerkin
approximation, in two types of modes,

u(2) = u
(2)
0 + u

(2)
2 = C

(2)
0

(
√

2
π
cos 2z

0

)

|A|2

+ C
(2)
2

(
√

1
π

0

)

A2e2i(qc·x+ωH t) + c.c., (6.15)

with the amplitudes

C
(2)
0 = −πI0(K

(eff) )2η(eff) α̃2λσ

4ω̃2λ
(2)
0

, (6.16)

C
(2)
2 =

πI2(K
(eff) )2η(eff) α̃2(λσ + iωH)

4
√
2ω̃2λ

(2)
2

, (6.17)

the growth rates

λ
(2)
0 = −(r̃ + 4Rcα̃

2), λ
(2)
2 = −(r̃ + 2iωH), (6.18)

and the projection integrals

I0 =
2

π
〈cos 2z ∂z [sin z C1(z)]〉 = 0.658, I2 =

2

π
〈cos z C1(z)〉 = 0.787. (6.19)
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Again, the expressions for the stationary regime are obtained by substituting ω̃2 →
λ2σ and ωH → 0 in the Eqs (6.15) - (6.18).

Both excited modes are pure charge-carrier modes. The mode u
(2)
0 is homoge-

neous in x, so the corresponding effective viscosity η̂(eff) [Eq. (5.28) for q = 0 and
appropriate projection integrals] diverges. This leads in Eq. (6.13) for very small
q to Ĉ2/σ̂(eff)a = ε⊥α3q

2/(σ⊥η2) times some projection integrals, i.e., the coupling

of σ to nz vanishes for q = 0. The σ part of u
(2)
2 does not excite the director

either, because this mode has no z dependence and the couplings are ∝ ∂zσ and
∂znz. The inhomogeneity (6.14) excites further modes, e.g., a mode with (σ, nz) ∝
(cos 2z, n2 sin 2z)e

2i(qc·x+ωH t). These modes, however, relax faster and the couplings
have smaller projection integrals; they will be neglected.

At order ε3/2, the inhomogeneous system for σ(3) and n(3)z reads

L̃

(

σ(3)

n(3)z

)

≡ I(3) = −




v(1) ·∇σ(2) +Rcα̃
2σ(eff)a gSM|A|2∂x∂zn(1)z

gSM|A|2
(

∂xn
(1)
z

τSM0
+ RcC2

σ
(eff)
a

∂zσ
(1)

)



 . (6.20)

where L̃ denotes the matrix-differential operator on the left-hand sides of the Eqs.
(6.4) and (6.5). The advection term of the excited charge-carrier density is given
(within the lowest-order Galerkin expansion) by

v(1) ·∇σ(2) =
1

2
Rcα̃

2σ(eff)a γσiqc|A|2A sin zei(qc·x+ωH t) + c.c. + nonresonant terms,

(6.21)
where γσ describes, both for the Hopf (ω̃2 = ω2H + λ2σ) and stationary (ωH → 0)
regimes, the nonlinearities originating from the σ modes,

γσ =
|λσ|

(ω2H + λ2σ)(τ
SM
0 )2





I20

λ
(2)
0

+
I22 (1 +

iωH
λσ

)

λ
(2)
2



 gσ, (6.22)

gσ =
π

4

(

K(eff) τ SM0
qc

)2

. (6.23)

Note, that the prefactor |λσ|/[τ SM0 (ω2H + λ2σ)] can be written as ∆ε/(ω̃τ SM0 )2 for both
regimes where the threshold shift ∆ε is given by Eq. (5.50).

Since the inhomogeneity I (3) in Eq. (6.20) has ”resonant” terms in the kernel
of the adjoint linear operator, there is a nontrivial solvability condition yielding the
Landau equation ∂tA = εA−g(1+ic)|A|2A, whose nonlinear terms are also that of the
CGL (6.3). The canonical procedure consists in projecting I (3) onto the eigenvector
of the adjoint linear problem with the eigenvalue λ∗. Here I present a more intuitive
approach stressing the concept of the amplitude-dependent effective coefficients that
is equivalent.
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Substituting in Eq. (6.20) the fields (σ(1), n(1)z ) = eiqc·x(σ, nz) where σ and nz are
given by the Galerkin approximations (5.40) and (5.39), projecting separately the
upper line of Eq. (6.20) onto (2/π)1/2 sin z and the lower line onto (2/π)1/2 cos z, 6

and adding the nonresonant linear terms, gives a quasi-linear generalization of the
2× 2 system (5.38),

(∂t − λσ)Aσ(t) +Rα̃2σ(eff)a (1− (γσ + gSM)|A|2)An(t) = 0,

− RC2

σ
(eff)
a

(1− gSM|A|2)Aσ(t) +
(

∂t − λn +
gSM

τSM0
|A|2

)

An(t) = 0,
(6.24)

where An is related to the CGL amplitude by

An(t) = Āq−qc
(t)eiω(qc,ε)t. (6.25)

The determinantal condition of Eq. (6.24) gives, as generalization of Eq. (5.47), the
amplitude-dependent growth rate λNL

λNL =
λσ + λ̃n

2

+

(−)
√

(λ̃n − λσ)2

4
− ω̃2 (1− (γσ + 2gSM)|A|2)

+ O(|A|4), (6.26)

λ̃n = λn −
gSM|A|2
τ SM0

. (6.27)

In analogy to the linear case, the amplitude equation is given, to order ε3/2, by Eq.
(6.7) with the Taylor expansion of λ replaced by that of λNL around q = qc, ε = 0
and |A|2 = 0.

Comparing the Taylor expansion with Eq. (6.3) leads to the nonlinear contribu-
tions

g(1 + ic) = −τ0
∂λNL
∂|A|2 . (6.28)

Evaluating Eq. (6.28) with the Eqs. (6.26), (6.22), (6.23), (6.18), and (6.19) finally
gives the nonlinear CGL coefficients, summarized in Table 6.2.

The Figures 6.1c, 6.1d, and 6.2d give, for I 52 parameters, plots of these expres-
sions as functions of α̃ and r̃. The chosen α̃ and r̃ values are in the experimentally
relevant range (for 28 µm cells of I 52, values of α̃ consistent with the measured
Hopf frequency vary from α̃ = 0.011 at 60◦C to α̃ = 0.038 at 30◦C).

Remarkabally, the saturation coefficient gstat in the stationary regime is negative
near the C2 curve indicating a hysteretic bifurcation. Intuitively, the advection
”washes away” the σ fields thus decreasing the threshold shift connected with them.
For increasing r̃, the σ field cannot build up to amplitudes causing a significant
threshold shift, and eventually, the bifurcation becomes forward. For increasing α̃,

6This is just the lowest-order Galerkin approximation of the system (6.20).
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Table 6.2: Nonlinear coefficients of the complex
Ginzburg–Landau equation (6.3)

Regime Coefficient Expression for Rcα̃
2 << 1

Hopf g gSM + (r̃+2|λσ|)I2

2

τSM
0
(r̃2+4ω2

H)
gσ

gc |λσ|
ωHτSM0









I2

0

r̃+4Rcα̃2 +
I2

2

(

r̃+
2ω2

H
λσ

)

r̃2+4ω2

H









gσ

+
[

2τSM
0

ω̃2

ωH
− |λσ|

ωH

]

gSM

Stationary gstat
(

1− 2τSM
0

ω̃2

|λσ|

)

gSM − ω̃2

τSM
0

λ2
σ

(

I2

0

r̃+4Rcα̃2 +
I2

2

r̃

)

gσ

the drift velocity of the charge carriers increases with respect to the fluid velocity
at a given ε, so that the advection effects get weaker causing an increasing gstat at
points with a constant distance r̃− r̃C2 from the C2 point. This is true especially at
the stationary side of the C2 curve itself, shown in Fig. 6.1d.

On the Hopf side, the saturation is stronger than in the SM (g > gSM), and the
frequency decreases with increasing amplitude (b > 0), unless the recombination
rate is very small. The frequency decrease can be made plausible with the help of
the nonlinear growth rate (6.26). For not too high α̃, the term ∝ γσ|A|2 in Eq.
(6.26) dominates. The real part of γσ describes the decrease of the σ − nz coupling
and leads to a decrease of the oscillation frequency, in analogy to decreasing the
oscillation frequency of a spring by decreasing the spring constant.

6.3 Comparison with experimental results

In this Section, I compare the weakly-nonlinear results of Chapter 6.2 with exper-
iments on I 52 [42, 30, 31] and with some results of the the group of Rehberg on
MBBA [39, 44, 41, 40].
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Figure 6.3 Frequency decrease 1
ωH

dω
dε :=

−∆−1 due to the linear and nonlinear fre-
quency shifts, calculated from Eq. (6.29)
as function of α̃ and r̃ for I 52 parame-
ters. The value α̃ = 0.16 corresponds to
T = 49◦C where the frequency decrease
was measured.

6.3.1 Decrease of the oscillation frequency with the control
parameter

On increasing the control parameter above its threshold value in the Hopf regime,
a decrease of the frequency of the travelling rolls was measured. In MBBA, the
decrease, in units of the Hopf frequency, was ∆−1 := − 1

ωH

dωH
dε
|c ≈ 2.1 for a 15 µm

cell at ω0τq = 1.1 [41] and ≈ 15 in Ref. [40]. In I 52, ∆−1 ≈ 11 for a 28 µm cell at
ω0τq = 1.34 and 49◦C [31] was measured. Note that ∆ defines the control parameter
ε at which a linear extrapolation of the frequency decrease would lead to stationary
patterns.

The theoretical dependence of ω on the control parameter is composed of the

linear and the nonlinear frequency shifts, dω
dε

= ∂ω
∂ε

+ ∂ω
∂|A|2

∂|A|2
∂ε

, where ∂ω
∂|A|2 = −gc/τ0.

For stationary conditions (not to be confused with the stationary regime), the am-
plitude of the critical mode is |A|2 = ε/gstat leading to the theoretical prediction

dω

dε
=
∂ω

∂ε
− c

τ0
, (6.29)

whith ∂ω
∂ε

and c from the Tables 6.1 and 6.2.
Fig 6.3 shows that the frequency decrease depends rather strongly on r̃. The

experimental value of ∆−1 = 11 in the I 52 experiments (α̃ = 0.016) is consistent
with r̃ = 0.045 corresponding to a recombination time of about 10 sec. This has to
be compared with the result τrec = 20s obtained from the C2 point in Chapter 5.
While this factor of two can be attributed to the approximations (e.g., ω0τq << 1)
made in calculating the nonlinear CGL coefficient b, further work is needed to clarify
if the strong dependence of ∆−1 and c on r̃ is an artefact of the approximations. In
particular, c gets negative for very small recombination rates which is rather unsure.

Generally, the magnitude of the change of the relative oscillation frequency de-
creases with increasing α̃, in qualitatve agreement with the lower value for MBBA
corresponding to α̃ = 0.025.
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6.3.2 Phase diagrams

The figures 6.4 and 6.5 show, for I 52 parameters and for ωτq << 1, the typical
weakly-nonlinear regimes in the (α̃, r̃) space, predicted by theWEM. The codimension-
two curve |λσ| = ω̃ separating the Hopf regime from the stationary regime (labelled
with ”C2”) derives already from the linear considerations in Chapter 5.4. With the
Eqs. (5.41) and (5.48), the condition for a Hopf bifurcation can be formulated as
r̃ < Rcα̃(C− α̃εq/σq)/(1+ω′2), i.e., there is always a Hopf bifurcation for sufficiently
small reombination rates, apart from extreme values of α̃.

Neighbouring the C2 curve on the stationary side is a region where the bifurcation
is hysteretic. Further away from the C2 curve, the bifurcation gets forward at the
tricritical curve ”TC”, and, in the limit r̃ →∞, the asymptotic dynamics is that of
the SM. For small α̃, the tricritical curve is approximately given by r̃tri = [gσ(I

2
0 +

I22 )/(τ
SM
0 gSM)]1/3ω̃2/3. For a higher SM saturation gSM or a lower gσ (increasing gSM/gσ

by a factor of four, or more), the TC curve would cross the C2 curve. In this case,
there exists a range of values for α̃ where the bifurcation is forward for all values of
r̃.

In contrast to the SM parameters entering most aspects of the dynamics in the
conductive regime only as relative quantities (σa/σ⊥, etc.), the WEM parameters α̃
and r̃, defined in Table 3.4, depend on the thickness d and on the absolute values
of the SM parameters which are changed by the temperature as a ”third control
parameter” besides R and ω0. Varying the temperature and using different cells, a
representative part of the phase diagram is accessible with only one type of NLC. The
mobility parameter α̃ ∝ (γ1/σ⊥)

1/2d−1 can be increased by choosing lower tempera-
tures (increasing γ1, decreasing σ⊥) or by a thinner cell; by contrast, the recombina-
tion parameter r̃ ∝ γ1d

2/(K11τrec) decreases by choosing a thinner cell. Presumably,
r̃ increases with temperature, for example, by an activation-energy like behaviour of
the equilibrium ion density n0 ∝ r̃ ∝ 1/τrec (Table 3.4).

The cross in the upper left corner of Fig. 6.4 indicates the point in parameter
space corresponding, for an assumed recombination rate of 20 s, to d = 28 µm and
30◦C. The thick arrow pointing to the stationary-hysteretic region shows the change
in (α̃, r̃) space expected when going to a 56 µm cell at the same temperature. The
experimentally observed bifurcation for such cells is, indeed, stationary, but this
has been used in Chapter 5.5.2 to determine the recombination time. Independent
from the recombination time, however, is the fact that the stationary bifurcation is
hysteretic near the C2 point and that the Hopf bifurcation is always continuous. 7

The dotted arrow shows the change in (α̃, r̃) space caused by heating the 28 µm
I 52 cell to 60◦C under the (questionable) assumption of a constant recombination
time of 20 s. If the recombination time decreased with temperature, e.g., in parallel

7There exist measurements on MBBA which have been interpreted as a hysteretic Hopf bifur-
cation [39]. They will discussed in Chapter 6.3.3.



90 Weakly nonlinear analysis

0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Stationary  hysteretic 

Statioary  continuous  

Travelling  rolls  

BF  u
ns

ta
ble

 

b 
c <

 0
 

b 
c 

> 
0 

I 52 

TC 

C2 

r 

α 

Figure 6.4 Phase diagram of the weakly-nonlinear behaviour in the parameter space (α̃, r̃)
for I 52 parameters at 45◦C, and for external frequencies satisfying ω0τq << 1. The
curve labelled with C2 is the codimension-two curve |λσ| = ω̃ separating the Hopf regime
of travelling waves from the stationary regime. At the stationary side, the bifurcation
is hysteretic in a rather large region bounded by the C2 curve and the tricritical curve
labelled ”TC”. For large r̃ or low α̃, the bifurcation becomes continuous and, in the limit
r̃ →∞, the SM behaviour is recovered. In the Hopf regime, the product bc of the dispersion
coefficient and of nonlinear frequency shift is positive for very small recombination rates
r̃ Approaching the C2 curve it becomes negative at the dashed-pointed curve and in the
neighbourhood of the C2 curve there is a small ”baloon” bounded by the dashed curves,
where the one-dimensional Benjamin-Feir criterion bc < −1 is fulfilled.
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Figure 6.5 Phase diagram for the same parameters as in Figure 6.4, but for larger values
of α̃ and r̃, relevant for thinner cells and/or higher recombination rates. The bending of
the C2 curve is due to the α̃2 term in the growth rate of the σ mode, Eq. (5.41). Above
α̃ = 0.018, there are severeal r̃ values where the product bc changes the sign, but where,
in general, |bc| << 1.
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with the director relaxation time (both times are related to activation-energy pro-
cesses), the arrow would point more to the right. For τrec < 5s, one would obtain a
stationary bifurcation at T>60◦C, in accordance with some measurements [30, 31].
There are, however, some intricacies connected with this observation which will be
discussed in the next Chapter 6.3.3.

There is a very thin tongue in the Hopf regime (dashed lines in the Figures
6.4 and 6.5) where the one-dimensional Benjamin–Feir (BF) criterion bc < −1 is
fulfilled. Within the one-dimensional CGL, all plane-wave solutions are unstable
against long-wavelength modulations in this region, resulting in spatiotemporal chaos
(STC) [11] for the envelope of the travelling waves. Experimentally, one found in
I 52 at T > 50◦C a Hopf bifurcation to STC. 8 At these temperatures, one is,
indeed, nearer to the BF unstable region than for lower temperatures or crosses even
the BF unstable region (arrow with the dashed line in Fig. 6.4), but the range,
where STC is observed, is much broader than this region. The one-dimensional BF
condition, however, is only a sufficient criterion for STC if there is more than one
spatial dimension or if couplings to other critical modes are relevant. For instances,
if the coupling (which has yet to be investigated) is such that a small change in the
coupling coefficients leads to a nonlinear selection of a different mode configuration
(e.g., oblique rolls vs square patterns if the roll angle is not too different from 45
degrees), the BF criterion for STC gets weaker with the extreme case bc < 0 [110]. In
the Figures 6.4 and 6.5, the larger region where bc < 0 is bounded by the dashed lines
and by the immediate neighbourhood of the C2 curve (not resolved on the plots).
It corresponds semiquantitatively to the parameter ranges where STC is observed in
I 52.

6.3.3 Hysteretic effects

Stationary regime

In the I 52 experiments, stationary bifurcations were always hysteretic, in accordance
with the WEM predictions not too far away from the C2 curve. The amplitude
(maximum director angle) of the nonlinear state right after the jump was found to
be 200 mrad (|ANL| = 0.2) in a 57 µm cell at 47◦C [31].

Strictly speaking, with a third-order CGL like Eq. (6.3), nothing more can be
said about hysteretic effects beyond the fact that the bifurcation is hysteretic or
not. Some properties specific to the WEM, however, enable some predictions on this
level. The effects of the σ fields always stabilize the system, so an upper limit of the
amplitude |ANL| of the nonlinear state after the hysteretic jump is set by the SM
amplitude. Moreover, both the excitation and the relaxation of the σ fields take place
on long time scales. This translates to small hysteretic jumps to nonlinear amplitudes

8At lower temperatures, one observed localized (and also irregular) states.
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Figure 6.6 Schematic illustration of a hys-
teretic bifurcation from the linear WEM
state (a) to a nonlinear state (b). ∆ε de-
notes the linear threshold shift separating
the neutral-stability curves of the SM and
the WEM at threshold. Shown is a situa-
tion where, at the point (b), the SM and
WEM amplitudes are not distinguishabel,
i.e., the σ fields have no influence on the
nonlinear state.

where, presumably, the amplitude equation of the SM is still valid. At last, if the
condition for a hysteretic bifurcation is well satisfied by, say, gstatWEM/g

SM < −1 (one
is not too near the TC curve), it is plausible that the advection homogenizes the
carrier density in the nonlinear state so that this state is presumably described by
the SM.

With these assumptions, it can be seen from Fig. 6.6, that the amplitude in the
nonlinear state (b) is that of the weakly-nonlinear SM with εSM = R/RSMc − 1 equal
to the linear threshold shift,

|ANL|2stat =
∆ε

gSM
=

ω̃2τ SM0
|λσ|gSM

. (6.30)

The highest jump takes place on the (stationary side of) the C2 curve with ANL|2stat ≈
τ SM0 /(gSMτrec).

The experimental parameters used for the hysteresis measurements in I 52 corre-
spond to a point near the C2 curve. This can be seen from Fig. 5.10 where the lower
curve is for a cell of a comparable thickness at a comparable temperature. With
τ SM0 = 0.33 s and τrec = 20 s, Eq. (6.30) gives at the C2 point the theoretical result
|ANL| = 0.184.

Hopf regime

The WEM always predicts a continuous bifurcation in the Hopf regime. Indeed, one
observes in I 52, that the initial bifurcation to oscillating states is continuous. At
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a rather small value εjp, however, the travelling-wave state with the amplitude |Ajp|
and the finite oscillation frequency ωjp < ωH jumps hysteretically to a stationary
state with a much higher amlitude |ANL| (see Fig. 6.7). For d = 28 µm , εjp varied
from 0.1 at 44◦C to 0.02 at 59◦C [31]. At even higher temperatures, a hysteretic
stationary bifurcation was observed as primary bifurcation. Due to the large steps
of the reduced control parameter (δε ≈ 0.01) in this experiment, it could not be
excluded, however, that the initial bifurcation is actually a continuous Hopf bifurca-
tion with a subsequent jump to a nonlinear stationary state at a very small εjp which
could not be resolved.

In MBBA, the bifurcations appeared continuous in experiments without exces-
sive sensitivity in optical contrast and resolution in ε [41, 111, 112]. In other very
careful investigations, primarily devoted to thermal fluctuations below threshold and
discussed in Chapter 7 [44, 39], one observed hysteretic bifurcations to a nonlinear
stationary state. The amplitude was about 150 mrad in the experiment of Ref. [39].
The spatiotemporal correlations of sub-threshold fluctuations in the same cells, how-
ever, can be explained only by assuming a Hopf bifurcation for the linear dynamics,
with a very small Hopf frequency of ωH/(2π) = 0.044 s in Ref. [39] and 0.05 s in
Ref. [44] (see Chapter 7 for more details). Can this ”hysteretic Hopf bifurcation” be
explained by assuming, again, a continuous Hopf bifurcation in a regime 0 < ε < εjp
which cannot be resolved experimentally?

To describe the dynamics of this scenario with Ginzburg–Landau equations seems
hopeless. One needed a seventh-order (!) CGL, and the amplitudes where the higher-
order terms come into play, would be higher than the range were a CGL description is
even qualitatively correct. By contrast, a semi-quantitative description seems possible
for the hysteresis by exploiting the quasi-linear 2× 2 equations (6.24) and assuming,
again, that the amplitude of the nonlinear state is given by the amplitude equation
of the SM.

From the determinantal condition of the system (6.24) for zero growth, λ = iω,
one obtains, neglecting terms ∝ |A|4,

−ω2 + λσ
τ SM0

(εSM − gSM|A|2) + ω̃2
(

1− (Reγσ + 2gSM)|A|2
)

= 0, (6.31)

ω

(

λσ +
εSM − gSM|A|2

τ SM0

)

− ω̃2Imγσ|A|2 = 0, (6.32)

where γσ is given by Eq. (6.22) with ωH replaced by the actual oscillation frequency
ω. The roots of the system (6.31), (6.32) determine the generalized neutral curves.
For the oscillatory branch, the result is (Note that εSM = ε+ |λσ|τ SM0 )

εosc = g(ω)|A|2, (6.33)

ω2 = ω2H −
|λσ|g(ω)
τ SM0

(

1 +
ωc(ω)

|λσ|

)

|A|2, (6.34)
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where g(ω) and c(ω) are the nonlinear CGL coefficients in Table 6.2 with ωH replaced
by ω. For the stationary branch ω = 0 one obtains

εstat = ∆εstat + gstat|A|2, ∆εstat =
τ SM0 ω2H
|λσ|

. (6.35)

Figure 6.7 illustrates schematically the resulting hysteresis curves. For small ampli-
tudes, the oscillatory branch has the lowest threshold. On increasing ε, the amplitude
is given initially by |A|2 = ε/g and the frequency decreases initially with the rate dω

dε
,

Eq. (6.29). The bending of the amplitude curve is due to the frequency dependence
of g(ω). With g(ω) > g > gSM, this branch has comparatively small amplitudes. The
stationary branch is the same as in the stationary regime; it is extremely hysteretic
since gstat (Table 6.2) becomes more negative for decreasing r̃ (the dashed curves in
Figure 6.1c have to be extrapolated to r̃ < |λσ|).

Because of the frequency mismatch, the system cannot cross over from the os-
cillatory curve to the stationary curve at the point B in Fig. 6.7. The actual point
where the jump takes place, has not yet been determined, so the points C and D in
Figure 6.7 are qualitative and based on experiments where the jump takes place at
an oscillation frequency of about half the Hopf frequency [31].

For very small Hopf frequencies as in Ref. [39], an upper bound can be given
for the control parameter at the hysteretic jump εjp (see Figure 6.7), εjp ≈ ∆/2 ∝
(ω̃τ SM0 )2. εjp decreases strongly with r̃. For r̃ = 0.5ω̃, it is smaller than the step size
δε = 0.001 of the experiment so that a forward Hopf bifurcation may go unnoticed.
Besides, the amplitude |A|2jp = εjp/g ≈ 13 mrad at the jump is very small; it is
only three times larger than typical rms values in the subcritical regime of (thermal)
fluctuations (!). This is caused by the combined effects of a small value of εjp, and
a high saturation coefficient, g/gSM = 6.5 for r̃ = 0.5ω̃. In contrast, the nonlinear
amplitude |ANL|2 = (εjp + ∆ε)/gSM ≈ 100 mrad increases with r̃, caused by the
increased linear threshold shift.

6.4 Discussion

The weakly-nonlinear analysis of the WEM agrees qualitatively and sometimes quan-
titatively with the experiments. At first, the calculation of the CGL coefficients
brought two linear results. The correlation time τ0 in the Hopf regime is twice that
of the SM while the correlation length is the same in both models. Both results
fit well to experimental values obtained for cells of 13 µm [39] and 23 µm [44]
thickness from the oscillating dynamics in the subcritical stochastic regime. There
seem to be no measurements of τ0 in I 52.

The phase diagram of the weakly-nonlinear behaviour agrees qualitatively. In par-
ticular, the Hopf bifurcations are always continuous and the stationary bifurcations
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Figure 6.7 Hysteretic secondary bifurca-
tion in the Hopf regime (schematically).
The curve labelled ”stat” is the station-
ary backwards-bifurcating branch of zero
growth rate which exists also in the sta-
tionary regime. At the point A (where the
amplitude is of the order of |A| ≈ |λσ|),
the stationary branch crosses over to the
SM branch ”SM”. The curve labelled
”osc” is the oscillatory branch starting
with the Hopf frequency. The oscillation
frequency decreases with ε until the curve
ends at zero frequency. At the point C,
the state jumps from the continuous Hopf
branch to the nonlinear SM state D.

are hysteretic if one is near the C2 curve. The observed STC for higher temperatures
in I 52 is compatible with the area in phase space where the WEM predicts bc < 0.
This can possibly be explained by a Benjamin–Feir like long-wavelength instability.

Both, linear and nonlinear results for I 52, are compatible with a recombination
time of 10 to 20 s. The decrease of the oscillation frequency of travelling waves with
the control parameter is compatible with τrec = 10 s. The amplitude of the nonlinear
state in the stationary-hysteretic regime requires τrec ≈ 15 s. Comparing the C2
curve with the external parameters (cell thickness, temperature, ω0) where the Hopf
frequency decreases to zero, gives τrec ≈ 20 s. In MBBA, the condition |λσ| < ω̃
required τrec > 1/ωH = 3.5 s in the experiment of Ref. [39].

The oscillatory behaviour observed for MBBA in the subcritical stochastic regime,
while a hysteretic jump to stationary patterns is observed above threshold [39], seems
puzzling. Even this seems to be consistent with the WEM assuming a continuous
Hopf bifurcation, but a jump to a stationary state at a small but positive control
parameter εjp which cannot be resolved experimentally. For typical experimental
resolutions δε < 0.001, this implies r̃ ≥ 0.4 or τrec ≤ 8 s. The reason for the small εjp
is the small Hopf frequency where Eq. (6.29) together with the CGL coefficient c in
Table 6.2 lead to εjp ≈ ∆/2 ∝ (ω̃τ SM0 )2. Recent experiments on the nematic mixture
Merck Phase 5 confirm this interpretation [113].
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An interesting prediction of the theory is that the nonlinear dispersion c becomes
negative for very small recombination rates, i.e., the oscillation frequency should in-
crease with the amplitude (the linear frequency shift can be neglected for small r̃),
which has never been observed. Possibly this is due to the dynamics of the excited
charge-carrier modes which become dynamically independent for small recombina-
tion rates so that the CGL is valid only in a very small range of ε. The CGL requires
that all excited modes relax much faster than the amplitude itself, τ−10 ε << |λ(2)0 |,
|λ(2)2 |, or

ε << τ0r̃ ≈ 2∆ε. (6.36)

The CGL of the WEM is valid, if the distance from threshold is much smaller than
the linear threshold shift. For I 52, this gives ε << 0.02 (Table 6.3), and in MBBA,
e.g., ε << 0.01 for the cell in Table 6.3 assuming r̃ = 0.5ω̃. With a typical resolution
of δε = 10−3, this range is experimentally accessible.
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Chapter 7

Thermal fluctuations in
pattern-forming instabilities

Statistics is the physics of numbers.

P. Diaconis

Thermal fluctuations result from deterministic chaos in 1023 di-

mensions.

I. Rehberg

The material in this chapter has been published as Ref. [114]. Landau’s method
of hydrodynamic fluctuations is developed in a form suitable for pattern-forming
systems. The resulting scheme is applied to RBC, to Taylor-Couette flow and to
the SM of EHC. Using the WEM would lead to a factor of two (two critical left-
and right travelling modes instead of one stationary mode) that is cancelled by the
correlation time in the denominator of Eq. (7.41), which the WEM predicts to be
twice as long as in the SM (Chapter 6.4).

7.1 Introduction

Recent experiments in several hydrodynamic systems confirm that pattern-forming
instabilities in extended nonequilibrium systems exhibit some features reminiscent of
equilibrium-phase transitions. Fluctuations of the field variables become measurable
near threshold and both their amplitudes and the correlations in space and time
increase as one approaches the threshold. Two questions arise. Are the measured
fluctuations of internal origin, i.e., due to thermal or quantum-mechanical noise (the
latter is predominant in lasers [115]) or are they the result of external noise from the
experimental setup? Can one theoretically describe thermal fluctuations in pattern-
forming systems in an unified way, as in equilibrium systems? A positive answer
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to the second question means extending the theory of fluctuations near equilibrium
phase transitions [68] to nonequilibrium systems. If in addition the predictions are
confirmed by experiments as discussed in the Sections 5 and 6 of this chapter, it is
safe to say that one actually measured thermal fluctuations. Each additional source
would increase the fluctuations.

Theoretical predictions for the effects of thermal noise in pattern-forming systems
were given for Rayleigh–Bénard convection (RBC) in simple fluids [116, 117, 118]
and recently for RBC in binary mixtures [119], for electrohydrodynamic convection
(EHC) in nematic liquid crystals (NLC) [120] and for Taylor–Couette flow (TCF)
[121, 122, 123]. In all this work, the dynamical (macroscopic) equations are supp-
plemented with stochastic terms accounting for the microscopic degrees of freedom
and determined from the assumption of local equilibrium. Near threshold the re-
sulting Langevin equations are reduced to a stochastic generalization of the usual
normal form equations. These equations are simple enough to be solved for the am-
plitude (and phase) fluctuations and may provide a basis for an unified description
of fluctuations of patterns in nonequilibrium systems. Once the amplitude fluctua-
tions are known the determination of the fluctuations of the physical fields and their
measurable effects is straightforward.

The crucial assumption in this approach is that of local equilibrium in systems
which are typically far from global equilibrium. This implies that the external forces
driving the system out of equilibrium, e.g., shear, director rotation, electric and
magnetic fields, and also the ensuing fields of the macroscopic patterns, are small
compared to the internal fields effective on a molecular scale. In the hydrodynamic
regime this should be always fulfilled.

In the next two sections I describe the method in a form applicable to a large
class of pattern-forming systems including quasi one-dimensional (1D) and quasi two-
dimensional (2D) systems and the interesting case of symmetry-induced degeneracy
where several deterministic solutions become simultaneously unstable at the primary
threshold. In Section 4 I calculate the fluctuations of planar EHC and compare them
with fluctuations of RBC patterns in simple liquids and axisymmetric vortices in
TCF. Chapter 7.5 describes relevant experiments which are compared to the theory
in the last section.

7.2 Macroscopic stochastic equations for thermal

noise

With the assumption of local equilibrium one can use locally the fluctuation-dissipation
theorem (FDT) which essentially states that thermal fluctuations are always con-
nected with dissipation and vice versa. So I start by writing down the ensemble-
averaged entropy production of the macroscopic system as an integrated sum of
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products of Onsager forces and currents (summation over doubly occurring indices
is implied)

〈
.

S〉 =
∫

V
d3r {Fα(r, t)〈Jα(r, t)〉} . (7.1)

For macroscopic hydrodynamic systems near local equilibrium this quantity is ex-
tensive and the forces and ensemble-averaged currents, Fα and 〈Jα〉, are linearly
related,

〈Jα〉 =MαβFβ := Jα − J̃α, (7.2)

where Mαβ are the components of the Onsager matrix M , given by the constitutive

material equations. We allow for fluctuations J̃α of the currents, Jα = 〈Jα〉 + J̃α
with 〈J̃α〉 = 0, and will determine them with the FDT. Introducing auxiliary field
variables xα(r, t) by Jα =

.
xα (Ref. [68]) one can write the constitutive relations (7.2)

with fluctuations as Langevin equation for xα,

.
xα=MαβFβ + J̃α. (7.3)

Expressing the entropy S[x] =
∫

V d
3rs(x(r)) in terms of x (x is a shorthand for all

xα) and comparing the averaged entropy production 〈
.

S [x]〉 = ∫

V d
3r ∂S

∂xα
〈 .
xα〉 with

(7.1), one sees that the forces are the variables conjugate to xα, Fα = ∂S
∂xα

, and (7.3)

can be written in a ”generalized potential form”
.
xα=Mαβ

∂S
∂xβ

+ J̃α. For a given small

volume element ∆Vr around r, the corresponding Fokker-Planck equation allows a
canonical stationary distribution W∞,r[x] ∝ eSr/kB with Sr =

∫

∆Vr
d3rs(x(r)) ≈

s∆Vr, if the probability currents are zero (detailed balance) and the fluctuations
are given by the fluctuation-dissipation theorem 〈J̃α(r, t)J̃β(r′, t′)〉 = kB(Mαβ +
Mβα)(∆Vr)

−1δrr′δ(t− t′) [68, 124]. In the continuum limit this becomes

〈J̃α(r, t)J̃β(r′, t′)〉 = kB(Mαβ +Mβα)δ(r − r′)δ(t− t′). (7.4)

Thus the FDT is a consequence of the postulated canonical distribution. Note that
this ansatz implies the existence of ”mesoscopic” volume elements which are large
enough so that the entropy can be treated as extensive quantity and small enough
to neglect spatial variations of the macroscopic fields.

Typical sources contributing to the density
.
s of the entropy production (7.1) are

.
s(v) related to the viscous flow and

.
s(th) related to thermal conductivity. In fluids

with finite electric conductivity there is a contribution
.
s(el) due to Ohmic heating,

and in NLCs an additional contribution
.
s(n) from the orientational relaxation of the

director field n(r, t) [72]. These sources are [120, 58, 125]

T
.
s(v)= σ

(s)
ij vij, T

.
s(n)= −σ(as)ij Ωij,

T
.
s(th)= − 1

T
j(th) ·∇T, T

.
s(el)= j(el) ·E,

(7.5)
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where vij = (∂ivj+∂jvi)/2 is the symmetrical fluid shear-rate tensor njΩij = nj(∂ivj−
∂jvi)/2 + (∂t + v ·∇)ni is the rotation of the director relative to the moving fluid,

σ
(s)
ij , σ

(as)
ij are the symmetric and antisymmetric parts of the stress tensor and j (th)

and j(el) are the dissipative parts of the heat and electric current. This list is not
complete; for example in binary mixtures there is an additional mixing-entropy term
proportional to the negative concentration gradient times the mass flux density of
one component, see e.g., [119, 126, 58].

There is some freedom in choosing the Onsager forces and currents. If one takes
as currents

{Jα} = (σ
(s)
ij , σ

(as)
ij , j

(th)
i , j

(el)
i ) (7.6)

then the conjugate forces are

{Fα} =
(

vij
T
, −Ωij

T
, −∂iT

T 2
,
Ei

T

)

, (7.7)

and the Onsager matrices can be found by comparing the dissipative part of the
constitutive material equations with the definitions of the currents and forces.

For NLCs the constitutive equations are (Chapter 2 and [57, 58])















σ
(s)
ij

σ
(as)
ij

j
(th)
i

j
(el)
i















=















Tηij,kl Tη
(n)
ij,kl 0 0

Tη
(n)
kl,ij Tγij,kl 0 0

0 0 T 2λik −Tλ(el)ik

0 0 −Tλ(el)ik Tσ
(el)
ik

























vkl/T
−Ωkl/T
−∂kT/T 2

Ek/T











, (7.8)

with the NLC-Onsager matrix as first term on the right-hand side. The viscosity
tensor ηij,kl, the rotational viscosity tensor γij,kl and the fluid-director coupling η

(n)
ij,kl

contain a total of five independent coefficients (for ηij,kl see Eq. (2.20), for the other

tensors see Eq. (B1) in [120]). The thermal and electric conductivities λik and σ
(el)
ik

and the Peltier coefficients λ
(el)
ik are uniaxial tensors of the form λ⊥δik + λanink.

To get the noise terms of the macroscopic equations themselves, one identifies all
parts which may contain dissipative effects and writes them in terms of the Onsager
currents. Typically these equations, written in terms of the perturbations u(r, t) of
the macroscopic fields from the unstructured state, can be cast into the symbolic
form (the field variables u should not be confused with the auxiliary variables x in
the derivation of the FDT),

[SR(∇, r, t)∂t + LR(∇, r, t)]u(r, t) +NR(u,∇, r, t) = ξ(r, t), (7.9)

with the noise term ξ to be determined. The linear matrix-differential operators
SR and LR and the nonlinear deterministic term N depend on a control parameter
R and may depend explicitely on r if the basic state is nontrivial (e.g., in TCF or



Stochastic amplitude equations 103

Non–Boussinesq RBC) or periodically on time in the case of periodic forcing as in
EHC. Recall from chapter 2 that the mascroscopic equations are either conservation
laws or balance equations for slowly relaxing variables or broken-symmetry variables;
the latter are e.g., director variations in NLC. The first class of equations contains
gradients of the currents (examples 1 and 2 below), the second one some linear
combination of the currents themselves. In both cases, the left-hand side of Eq.
(7.9) can be written symbolically as

(SR∂t + LR)u ≡ −D〈J〉+ conservative terms, (7.10)

where J contains all Onsager currents and D is a matrix-differential operator for
conservation laws and a matrix for other balance equations. The stochastic forces
are accordingly

ξ(r, t) = DJ̃(r, t). (7.11)

In summary, the Langevin equations (7.9) are a stochastic generalization of the
deterministic basic equations. The fluctuating forces ξ have zero mean and their
second moments are given in terms of D and the Onsager matrix M by (7.11) and
(7.4). M is defined via the constitutive material equations (Eqs. (7.8) for NLCs))
and D by the basic equations themselves (see examples below). Note that M and
D may depend on broken-symmetry variables and in addition M on scalar fields
(temperature etc.) of the basic equations, giving rise to multiplicative parts of ξ
in terms of the macroscopic field variables. As an example, the constitutive NLC
material tensors depend on the director n, which is also a macroscopic variable in
the EHC equations.

Now I give some examples for D.

1. Navier-Stokes equations for an incompressible fluid,
ρm(∂t+v ·∇)v+∇p−∇〈σ〉−f vol = ξ(v). All dissipative effects are contained

in ∇σ, which can be written (in Cartesian coordinates) as (∇σ)i = ∂j(σ
(s)
ji +

σ
(as)
ji ) = Di,jk(σ

(s)
jk + σ

(as)
jk ) with Di,jk = δik∂j. Hence ξ

(v)
i = Di,jk(σ̃

(s)
jk + σ̃

(as)
jk ).

2. Heat equation (conservation of energy) ρmcv(∂t + v ·∇)T +∇ · 〈j(th)〉 = ξ(th).

Obviously D = −∇ and ξ(th) = −∇ · j̃(th). Things are analogous for the charge
conservation equation.

3. Director equations in EHC (balance of local angular momentum), n×Γ = ξ(n),
where Γ is the molecular field introduced by De Gennes [25]. Here the dissipa-
tive terms are not so obvious. They are proportional to the antisymmetric part
of the stress tensor, (n×Γ)i = (n×Γ)(cons)i + εijk〈σ(as)jk 〉, i.e., ξ

(n)
i = −εijkσ̃(as)jk

[72, 120, 127], where εijk is the total-antisymmetric third-rank unity tensor.
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7.3 Stochastic amplitude equations

Amplitude equations (normal forms), valid near threshold in systems with a conti-
nous bifurcation, are universal in a way that they only depend on the symmetries
of the pattern and on the quasi-dimensionality of the system. Stochastic ampli-
tude equations seem a natural way to generalize this universality to fluctuations of
patterns, and compare them to equilibrium fluctuations near continous phase tran-
sitions. We define as quasi-dimensionality D the number of dimensions (0, 1 or 2)
where the system is translationally invariant and infinite. Of course ”infinite” means
sufficiently large so that boundaries play no role; for stationary patterns this means
a system size much larger than the correlation length of the pattern; for travel-
ling waves the precise conditions are not yet well understood, but seem to be more
stringent [9]. Denoting the infinite directions with r‖ and the other ”perpendicu-
lar” directions with r⊥, a space point is given for D = 2 by r = (r‖1, r‖2, r⊥1) and
for D = 1 by r = (r‖1, r⊥1, r⊥2). The r⊥-coordinates are allowed to be curvilinear.
We will use vector notation for r‖, r⊥ only if they explicitely have more than one
component.

The symmetries of the correlations of the fluctuating pattern below threshold
are determined by the branches of the linear deterministic growth rate λ(ε, k) =
Reλ(ε, k)− iω(ε, k) for the modes uk = eλteik·r‖ fR(k, r⊥, t) becoming first unstable
at threshold, where fR is periodic in t in systems with periodic driving like AC-
driven EHC. The reduced control parameter ε = (R − Rc)/Rc and the threshold,
λ(ε = 0, kc) = −iωc, are defined as usual. A bifurcation is stationary if ωc = 0, and
degenerate if the growth rate of the critical branch becomes simultaneously unstable
around several kc values or if there are several critical dispersion branches, e.g.,
associated with a Hopf bifurcation λ(ε = 0, kc) = ±iωc.

The amplitude equations are usually derived by a multiple-scale perturbation
around threshold [9, 10], but for the linear part the resulting solvability conditions
determining the amplitude are equivalent to projecting the basic equations onto the
critical eigenfunctions. We extend now this projection to the stochastic system and
add, if necesary, the nonlinear deterministic terms ad hoc. The director-dependent
parts of the fluctuating forces, described in the paragraph after Eq. (7.11), will lead
to additional multiplicative noise terms also in the amplitude equation. Reference
[120] gives plausibility arguments that within the range of validity of the amplitude
equation they are negligible compared to the additive noise.

We show this projection for autonomous systems with non-degenerate bifurca-
tions and make some remarks about more general cases later. Inserting the ansatz

u(r, t) =
∫

dDk′ei(k
′·r‖−ωt)ψ(k′, t)fR(k′, r⊥) (7.12)

in the linear part of (7.9) and projecting these equations onto the eigenfunctions of
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the adjoint linear problem gives a stochastic linear equation for the mode amplitudes,

∂tψ(k, t) = λ(ε, k)ψ(k, t) + Γ(k, t). (7.13)

The noise term is

Γ(k, t) =
[f †R, ξ(t)]

[f †R, SR(∇‖ → ik,∇⊥, r⊥)f
R]
, (7.14)

where ∇‖ and ∇⊥ are the components of the nabla operator in the r‖ and r⊥ direc-
tions, respectively. The brackets denote the scalar product

[φ,η] :=
1

C

∫

C
d3−Dr⊥φ

∗
α(r⊥)ηα(r⊥), (7.15)

for vector functions φ and η containing fields of the basic equations and defined in
C where C is the cross-section forD = 1 and the thickness forD = 2. The Hermitean
conjugate operators in the adjoint linear problem (SR†∂t+L

R†)e−i(k·r‖−ωt)f †R(k, r⊥) =
0 are defined with respect to this scalar product.

Inserting (7.11) and (7.4) into (7.14) gives 〈Γ〉 = 〈ΓΓ〉 = 〈Γ∗Γ∗〉 = 0 and the
noise strength [120]

〈Γ∗(k, t)Γ(k′, t′)〉 = QR(k)(2π)−Dδ(k − k′)δ(t− t′), (7.16)

QR(k) =
1

C

[f †R, O(ik,∇⊥, r⊥)f
†R]

|[f †R, SR(ik,∇⊥, r⊥)f
R]|2

. (7.17)

The noise-correlation matrix of the basic equations, defined (in real space) as
〈ξ(r, t)ξ(r′, t′)〉 = O(∇, r)δ(r − r′)δ(t− t′), is given by

O(∇, r⊥) = kBD(M +MT )D†. (7.18)

where D† is the Hermitean conjugate of D with respect to the scalar product (7.15).
The intensity of stationary fluctuations of the modal amplitudes resulting from Equa-
tion (7.13) with (7.16) is

〈|ψ(k)|2〉 = QR(k)

2(2π)DRe(−λ) . (7.19)

The above eqations are valid in the linear regime and in particular for any k and
ε ≤ εNL < 0 (for all practical purposes εNL ≈ 0, see [118]). Now I specialize to the
vicinity of the threshold and consider only contributions near±kc since the stationary
mode fluctuations (7.19) are large only in these regions. Expanding the linear modal
growth rate λ(ε, k) to lowest nontrivial order around threshold and evaluating the
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stochastic terms at threshold one obtains from (7.13) the main result of this section,
the amplitude equation in real space,

τ0(∂t + vg · ∇‖)A(r‖, t) = (ε+ ξij∇‖i∇‖j)A(r‖, t)

+ τ0
√

Q η(r‖, t), (7.20)

Q = QRc(kc). (7.21)

The amplitude A(r‖, t) is defined by its Fourier tansform, A(q, t) = ψ(kc+ q, t). The
deterministic coefficients τ−10 = ∂ελ, vg = ∇kω and ξij = − τ0

2
∂ki∂kjλ (τ0, ξij in

general complex) come from the expansion of λ(ε, kc− i∇‖)+ iωc to lowest nontrivial
order around threshold and η(r‖, t) is a complex Gaussian noise source with 〈ηη〉 =
〈η∗η∗〉 = 0 and <η∗(r‖, t) η(r′‖, t

′)>= δ(r‖ − r′‖)δ(t− t′).
An example of the resulting equal-time correlations <A∗(r‖ + ∆r‖, t)A(r‖, t)>-

=
∫

dDr‖e
iq∆r‖Q/(2(2π)DReλ) for 1D with r‖ = x and real coefficients is

〈A∗(x+∆x, t)A(x, t)〉 = Qτ0e
−
∣

∣

∣

∆x
√
−ε

ξ0

∣

∣

∣

8ξ0
√
−ε . (7.22)

Since (7.20) is an inhomogeneous equation, the precise connection with the physical
quantities is essential. We get from (7.12) near threshold

u(r, t) = A(r‖, t)f(r⊥)e
i(kc·r‖−ωct) + c.c. + h.o.t. (7.23)

Now I discuss some generalizations.
For discretely degenerated bifurcations, e.g., zig and zag rolls (ωc, kcx, kcy) =

(0, kcx,±kcy) in EHC in the oblique-roll regime[48], left and right travelling waves
(±ωc, kcx, 0) in EHC in thin and clean cells [97] or in 1D-RBC in binary mixtures and
other sytems, or both degeneracies [30], there are amplitude equations of the form
(7.20) for each set ±kc of modes around the critical k vectors. They are independent
in the linear regime if the different (ωc, kc) values are sufficiently separated.

For isotropic systems e.g., RBC in isotropic fluids, EHC or RBC in homeotropi-
cally aligned EHC (see e.g., [23]) or optical vortices in large-aperture class A lasers
[128] λ is of the form λ = λ(k2, ε). Inverse Fourier transform of (7.13) and substitut-
ing for the growth rate a generic isotropic expression approximating λ near threshold
to O(k2−k2c )2 and O(ε), gives with the same approximations as above the stochastic
Swift-Hohenberg (SSH) equation

τ0∂tψ(r‖, t) =
(

ε− ξ̃40(k
2
c +∇2

‖)
2
)

ψ + τ0
√

Qη(r‖, t), (7.24)

where ξ̃40 = − τ0
2
∂2λ(k2)/∂(k2)2|k=kc . The amplitude ψ, defined as the inverse spa-

tial Fourier transform of ψ(k, t), is related to the physical quantities in the case of
stationary bifurcations by

u = ψ(r‖, t)f(r⊥) + h.o.t. (7.25)
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and its modes in k space have the fluctuation intensity (7.19). In contrast to the
difficulties with the deterministic version of this equation in the weakly nonlinear
regime (see e.g., [9]) it should be correct in describing subcritical fluctuations.

Nonautonomous systems with a periodic driving force like AC-driven EHC can be
reduced (using the Floquet theorem and a discrete Fourier transformation in time)
to an infinite set of autonomous equations for the components of u proportional to
e±inω0t, with the external driving frequency ω0 and integer n [120]. Truncating at
some n = nmax gives an effectively autonomous system.

Note that expression (7.21) is valid for both the amplitude and the SSH equations
and for any boundary conditions (BC) including lateral through flow. The actual
value of Q changes because the eigenfunctions (and eventually S) depend on the
BC and on the through flow. As shown in the next section, the fluctuations of the
physical quantities, obtained from the amplitude fluctuations with (7.23) or (7.25), do
not depend on the normalizations of f or f †. They are, as equilibrium fluctuations
calculated with the equipartition theorem, inversely proportional to the thickness
(D=2) or to the cross section (D=1).

7.4 Theoretical results

At first I show how the method works by applying it to RBC in isotropic fluids, a
pattern-forming system with one of the simplest basic equations. Then I calculate
fluctuations of axisymmetric vortices in TCF, an example for an 1D system with
curvilinear geometry and a nontrivial basic flow leading to an explicit r⊥ dependence
in the linearized basic equations. Finally I calculate the stochastic term of the
anisotropic amplitude equation of quasi two-dimensional planar EHC. Here the basic
equations are far more complex and depend (due to the periodic driving) explicitely
on time. The calculations are rather lengthy but as straightforward as in the other
systems.

7.4.1 Rayleigh–Bénard convection

We consider both a quasi two-dimensional system with a thickness d, r‖ = (x, y), r⊥ =
z, and an 1D system with a rectangular cross-section Lyd, r⊥ = (x, y) and r‖ = x
where Ly and d are of the same order and so small that the unstable mode branch
fR(k, r⊥) is well separated from the branches of other perpendicular modes. As
order-parameter equations one can take for the 2D system the SSH equation (7.24)
which has in this classical case real coefficients, and for the 1D system the amplitude
equation (7.20), which specializes without through flow to

τ0∂tA = (ε+ ξ20∂
2
x)A+ τ0

√

Qη(r‖, t). (7.26)
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If the one-dimensional system has periodic BC in the y direction then τ0 and Q are
the same and ξ0 is related to the SSH length ξ̃0 by ξ20 = 4k2c ξ̃

4
0 . The coefficients can

be written as integrals of the eigenfunctions over the cross section [9] and depend
via the eigenfunctions on the BC. The basic equations (7.9) are the Navier-Stokes,
heat balance and continuity equations for the deviations (v, θ, p) of the velocity,
temperature and pressure from the unstructured state (v0, T, p0) [9], where v0 = 0
without through flow.

The heat balance equation, written in terms of the temperature deviation, couples
only to vz and has the same stochastic term as in Example 2 in Section 2 above. By
applying twice the curl operation on the Navier-Stokes equations and taking the z
component an equation for vz is obtained (see Eq (A.4) in [118]), which couples only
to the temperature deviation and has the fluctuating force (compare with Example
1 in Section 2) ξz = [∇× (∇× ξ(v))]z = [∇× (∇×∇σ̃)]z.

We gather the ingredients D,M and D† of the noise-correlation matrix. For
incompressible isotropic fluids the dissipative transport coefficients in (7.8) reduce

to ηij,kl = νρm(δikδjl + δilδjk), η
(n)
ij,kl = 0 and λik = cvρmκδik where ν is the kinematic

viscosity, κ the heat diffusion coefficient and cv the specific heat per mass. The
components of the Onsager matrix are M

(vv)
ij,kl = Tνρm(δikδjl + δilδjk) for the velocity

equations,M
(th,th)
ij = cvρmT

2κδij for the temperature balance, and zero for the mixed

components. Writing ξz as D
(vv)
jk σ̃jk with D

(vv)
jk = (∂z∂k − δ3k∇

2)∂j = −D(vv)†
jk (all

indices run from 1 to 3) and D(th,th) = −∇ = −D(th,th)† from example 2 one gets
O(vv) = −2kBTνρm(∂2x + ∂2y)∇

4, O(th,th) = −2kBT 2κcvρm∇
2, and zero for the two

nondiagonal elements. To calculate the Hermitean conjugates I used the fact that v
and θ vanish at the boundaries.

It is convenient to scale space by d, time by d2/η and temperature by P∆T/R
with the Prandtl number P = η/κ and the Rayleigh number R = ∆Tgαd3/(κν)
where α is the heat expansion coefficient and g = 9.81ms−2. Choosing kc = kcx̂ and
inserting in (7.21) the noise-correlation matrix O and the time-derivative coefficients
S(vv) = −∇

2, S(th,th) = P and S(th,v) = S(v,th) = 0 gives the noise intensity of both
the nondimensionalized SSH and amplitude equations,

Q(R) = 2Q
(R)
0

×
∫

C′d
3−Dr⊥{f†∗z (k2c−∂2y)(k2c−∇2⊥)2f

†
z+α

(R)f†∗
θ
(k2c−∇2⊥)f

†
θ
}

|
∫

C′d
3−Dr⊥{f†∗z (k2c−∇2⊥)fz+Pf

†∗
θ
fθ}|2

,
(7.27)

with the (small) parameter

Q
(R)
0 =

kBT

ρmdν2
. (7.28)

The integrals go over the scaled cross section C ′ (C ′ = 1 for 2D, Ly/d for 1D and
LxLy/d

2 for one Fourier mode) and fz and fθ denote the vz and θ components of the
eigenfunction at threshold. The relative contribution of the temperature fluctuations
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turns out to be negligible for usual fluids [117, 118], but an analog will be essential
in Taylor–Couette flow, so I will keep it.

If one multiplies equation (7.27) by a scalar product of any of the nonzero
eigenfunction components fz, fx and fθ (fz and fθ can be chosen real here and
iqfx = −∂zfz) then the right-hand sides of the resulting equations are manifestly
independent of the normalizations. Furthermore some scalar products relate the re-
sulting equations directly to measurable effects of the fluctuations as can be seen
from the left-hand sides of the following examples with (7.25) or (7.23) and 〈ψ∗ψ〉
(or 〈A∗A〉) ∝ Q. Multiplying equation (7.27) with ([fz, fz] + [fx, fx])ρmC

′/2 makes
its sides proportional to ρm/2

∫

d3−Dr⊥〈v2〉, the mean energy per length (2D) or per
area (1D), contained in the velocity fluctuations (see below). Multiplying both sides
with C ′[fθ, fθ] relates them to the cross-section integrated temperature fluctuations
proportional to the shadowgraph signal as discussed in Section 5. The simplest
expression is obtained by multiplying (7.27) with [fz, fθ], relating the sides to the
relative increase N − 1 = R−1

c [fz, fθ]〈|ψ|2〉 of the heat transport due to convection
(N is the Nusselt number) which is again a (globally) measurable quantity. This
gives

[fz, fθ]Q
(R) =

2Q
(R)
0 (1 + α(R))

C ′τ
2(R)
0

. (7.29)

For 2D and free-slip BC (or 1D with additional periodic BC at±Ly/2 and ∂y = 0),
one has τ0 = 2(P +1)/(3π2) and Eq. (7.29) is (after taking care of the different scal-
ings and relations to the physical variables) the classic result of Graham [117, 129].
For no-slip BC τ0 = (P + 0.512)/19.65 [118] and (7.29) is the result of van Beijeren
and Cohen [130]. The BC and the dimensionality enter via τ0 and the projection
integral. In particular, cross-section integrated fluctuating quantities rather than the
fluctuations themselves are independent of the transverse system size.

As an example I give for the 1D system with periodic BC and α(R) = 0 the
average line energy density

〈E ′〉 = ρm
2

∫

C
dy dz〈v2〉 = ρmν

2C ′ ([fx, fx] + [fz, fz]) 〈|A|2〉 (7.30)

of the fluctuations in physical units,

〈E ′〉RBC =
kBT

4dξ0
√

|ε|(−λ0τ0)
(7.31)

where λ0 = λ(ε = −1, k = kc) is the equilibrium-growth rate of the mode becoming
unstable at threshold and, for no-slip BC, ξ0 = 0.38 and −λ0τ0 = 1+1.93P . In deriv-
ing (7.31) I used (7.23), the stationary fluctuations (7.22) of the scaled 1D amplitude
equation, expressed fx in terms of fz and used (7.29) with Izθ := [fz, fz]/[fz, fθ] given
below in (7.34) and an analogous integral expression for λ0. There is an additional
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factor e−|x/ξ| cos kcx with the correlation length ξ = ξ0/
√
−ε for two-point equal-time

velocity correlations with separation x. For 2D and near threshold the corresponding
energy per area is kc/2 times the line energy density (7.31) [131].

Equation (7.31) states that in 1D the mean kinetic energy of velocity fluctuations
in a volume with unscaled cross section C and twice the unscaled correlation length ξd
is 1

2
kBT (τ0|λ0|ε)−1. In 2D the corresponding volume is d times the area (ξd)(4λroll/π)

with λroll = π/kc. This appears, especially for P → 0 (λ0τ0 → −1), similar to
equipartition-theorem fluctuations. Indeed, calculating the average energy of velocity
fluctuations contained in one Fourier-mode pair with (7.19) and (7.16) gives, for
arbitrary vertical BC and Prandtl numbers and periodic BC in x and y,

ρm
2

∫

V
d3r〈(|vk|2 + |v−k|2)〉 =

kBT

|ε|

{

1 P = 0 or ε = −1,
(|λ0|τ0)−1 ε→ 0−,

(7.32)

where V is the volume of the system. Without temperature gradient (ε = −1) the
kinetic energy contained in these fluctuations fulfills the equipartition theorem (two
physical degrees of freedom per wave-vector pair). For zero Prandtl number the
fluctuations increase like −1/ε if a temperature gradient is applied.

7.4.2 Taylor–Couette flow

The system consists of two concentric cylinders of inner and outer radii R1 and R2,
rotating at angular frequencies Ω1 and Ω2, respectively. We scale lengths and time
as in RBC, where d is now the gap width R2 − R1, and take as control parameter
the dimensionless inner rotation ω1 = Ω1d

2/ν. The outer rotation ω2 = Ω2d
2/ν and

the radius ratio η = R1/R2 are fixed parameters. The system is effectively one-
dimensional and described best in cylindrical coordinates r‖ = z and r⊥ = (r, φ).
In a range of the control parameters where the first instability of the basic Couette
flow leads to axisymmetric vortices [9], the amplitude equation for A(z, t) without
through flow is the same as Eq. (7.26) for 1D-RBC. With axial through flow there is
an additional group velocity term vg∂xA where vg is 1.23 times the mean axial velocity
of the through flow (1.05 times the phase velocity of the vortices) and furthermore
the other coefficients have very small imaginary parts [132].

The only noise source in the basic equations [73] comes from the stress tensor in
the Navier-Stokes equations for the deviations of the velocity from the basic Couette
flow. In cylindrical coordinates one gets (the indices take the values r, φ, and z)

(∇σ)i = D
(vv)
i,jk σjk with D

(vv)
ij,k = (δikr

−1∂jr + r−1δk2(δi2δj1 − δi1δj2)). The Hermitean

conjugates with respect to (7.15) are D
†(vv)
jk,i = −δik∂j + r−1δk2(δi2δj1 − δi1δj2). A

straightforward calculation of Eq. (7.21) gives an expression for the noise strength
of the TCF amplitude equation which is similar to (7.27). Instead of writing it down
(see [121, 122]) I use the fact that for ω2 > 0 the Taylor system can be mapped onto
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RBC to second order in the gap width 1 − η yielding explicit analytic expressions
in terms of RBC parameters [122]. The resulting noise intensity of the amplitude
equation is

[fr, fr]Q
(T )(ω2, η) ≈

Q
(R)
0 (1 + α(T ))Izθ

πrτ
2(R)
0 |P=1

, (7.33)

where

Izθ =
[fz, fz]

[fz, fθ]
=

k2c [fz, fz]

[fz, (k2c − ∂2z )
2fz]

, (7.34)

α(T ) =
4ω2(r)

Rc

, r =
R1 +R2

2d
. (7.35)

The radial eigenfunction fr corresponds to fz in the RBC system and ω(r) denotes
the squared dimensionless angular velocity of the basic Couette-flow ω(r) [73] in the

middle of the gap. For no-slip BC (Rc = 1708, τ
(R)
0 = 0.077, Izθ = 0.013) the error

with respect to a calculation of (7.21) using numerically obtained eigenfunctions
[121] is less than 2.5% for η = 0.738 and all ω2 ≥ 0 [122]. Smaller gaps (larger η)
should make the approximation even better since the mapping onto RBC gets exact
for η → 1.

Eqation (7.33) states that, if one relates the amplitude to vr in TCF and to vz in
RBC, the noise strength of the amplitude equation for axisymmetric TCF vortices
is (1+α(T ))/(1+α(R)) ≈ (1+α(T )) times the noise strength of 1D-RBC with P = 1,
a width 2πr, and periodic BC in y. While in RBC the relative influence α(R) of the
temperature fluctuations is negligible, the relative influence α(T ) of vφ fluctuations
on fluctuations of the axisymmetric Taylor vortices dominates for large corotation
rates ω2. Velocity fluctuations, integrated over the respective cross sections, should
be comparable in both systems if they are at the same (small, negative) distance ε

from threshold [133]. For the mean line energy 〈E ′〉TCF = ρm
2

∫

Cr drdφ〈v2r + v2z〉
(T )

,
contained in the fluctuations of the velocity components vr and vz which correspond
to vz and vx in RBC, one obtains

〈E ′〉TCF =
kBT

(4dξ0
√

|ε|)
(1 + α(T ))

(−λ(R)0 τ
(R)
0 )





τ
(T )
0

τ
(R)
0



 . (7.36)

With τ
(T )
0 /τ

(R)
0 = ξ20/ξ

2(R)
0 (Ref. [122]) the mean energy per length is effectively

(1 + α(T ))(τ
(T )
0 /τ

(R)
0 )1/2 times the RBC line energy density which is 〈E ′〉RBC =

0.225kBT/(d
√

|ε|) for no-slip BC.
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FIGURE 7.1. Average line energy contained in the fluctuations

of the radial and axial velocity components of axisymmetric

Taylor vortices with realistic no-slip BC. The plot shows the

enhancement factor (1 + α(T ))(τ
(T )
0 /τ

(R)
0 )1/2 of the line energy

density with respect to that of the equivalent one-dimensional

Rayleigh–Bénard system with Prandtl number P = 1 and the

same distance ε from threshold. The hoerizontal axis is the

dimensionless corotation ω2 = Ω2d
2ρm/ν of the outer cylinder.

Parameter is the radius ratio η.

Figure 7.1 shows a plot of this enhancement factor for various outer corotation rates
ω2 and radius ratii η. For the outer cylinder at rest (ω2 = 0) and a radius ratio
η = 0.738 as in [121], the line energy is nearly the same as for RBC with P = 1
(factor 0.94). Without external stress (ω1 = ω2 = α(T ) = 0) one recovers again
equipartition-theorem results .

7.4.3 Planar electrohydrodynamic convection

The system consists of a thin liquid crystal cell (thickness d) sandwiched between two
planar electrodes. The external stress is an applied AC voltage V (t) =

√
2V0 cosω0t;

the control parameter is V 2
0 for fixed ω0 and ε = V 2

0 /V
2
c − 1. We assume planar BC

n = (1, 0, 0) making the system anisotropic in the infinite directions and consider
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a range of ω0 and of the material parameters, where the first instability at Vc is to
normal rolls kc = (qc, 0) (roll axis normal to equilibrium director orientation) with
an essentially time independent splay-bend director mode (conductive regime) [48].
The system is quasi two dimensional. Choosing r‖ = (x, y), r⊥ = z, the amplitude
equation (7.20) reduces to

τ0∂tA(x, y, t) = (ε+ ξ20x∂
2
x + ξ20y∂

2
y)A+ τ0

√

Qη(x, y, t). (7.37)

The basic charge conservation, director, and nematic Navier–Stokes equations for the
deviations (φ, δn,v) of the basic state (

√
2V0

z
d
cosω0t,n0, 0) have periodic coefficients

[48]. Stochastic forces come from the fluctuations of j (el) in the charge equation (see

example 2 at the end of Section 2), from the antisymmetric stress tensor σ
(as)
ij in

the director equation (example 3) and from both parts of σij in the fluid equation
(example 1). The noise correlation matrix O from equation (7.18), calculated with
the anisotropic Onsager matrix (7.8) without the temperature components, is given
in [120], Equation (67).

To calculate the threshold and the eigenfunctions in (7.21) I apply the lowest-
order time-Fourier expansion for the conductive mode and lowest-order trial functions
satisfying no-slip planar BC’s for the z dependencies of all fields [120]. Furthermore
I eliminate the velocities adiabatically. With lengths scaled by d and times by the
director relaxation time τd = γ1d

2/(K11π
2) (K11 is the splay elastic constant and

γ1 the rotational viscosity), a straightforward but lengthy calculation of (7.21) gives
eventually for the parameter set of MBBA I [120],

[fnz , fnz ]Q =
2Q

(E)
0 |λ0|
C ′K

(

1 + α(E)

(τ0λ0)2
+O(

ω0
ωcutoff

)2
)

, (7.38)

where |λ0|/K = 1.84, α(E) = 14.9P1, |λ0|τ0 = 1 + 9.3P1 and P1 = τel/τd ≈
2.81(µm/d)2. The left-hand side of (7.38) is proportional to the fluctuations of nz, a
quantity which is related to the fluctuations of light modulations in the shadowgraph
method, see Section 5.

The quantity |λ0|/K with K = [fnz , (K33q
2/K11−∂2z )fnz ]/[fnz , fnz ] is the ratio of

the energy dissipation rate to the elastic energy of the fluctuating mode. The ratio
P1 of the time scales τel = ε0ε⊥/σ⊥ and τd of the electric and director subsystems
is the analog of the Prandtl number in RBC. The relative contribution α(E) of the
charge fluctuations is the analog of the temperature fluctuations in RBC and the
vφ fluctuations in TCF. Since both, α(E) and P1, are proportional to d−2, charge
fluctuations become important for thin cells. In principle there is a second time-
scale ratio d2ρm/(ντd) of the time scales of the fluid and director subsystems but it
turns out to be negligibly small (≈ 10−6). This justifies the adiabatic elimination of
the velocities and implies that the velocity fluctuations, which play the main role in
RBC, are negligible here.
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The prefactor

Q
(E)
0 =

kBT

K11d
≈ 10−3

µm

d
(7.39)

is much larger than in RBC or TCF making EHC the best candidate for quantitative
fluctuation measurements.

As in the other systems one can calculate the mean line and area densities of the
orientational-elastic energy contained in the fluctuations of the splay-bend director
modes. Although typical EHC systems have large aspect ratios and are quasi two di-
mensional, the line energy density 〈E ′〉EHC = 1

2

∫

Cdy dz{K11(∂znz)
2+K33(∂xnz)

2} =
1
2
K11KC

′[fnz , fnz ]〈|A|2〉 (proportional to the integrated director fluctuations) makes
sense if interpreted as energy contained in all Fourier modes with ky = 0. Indeed it
is this quantity which was measured in the experiments of reference [97] as described
in the next section. With the 1D version of (7.37), (7.38) and (7.22) one obtains

〈E ′〉EHC =
kBT

4ξ0d
√

|ε|
β (7.40)

with

β =
1 + α(E)

|λ0|τ0
, (7.41)

remarkably similar to (7.31) and (7.36) although the energy itself is quite different
in nature, here an elastic energy while in RBC and TCF a kinetic energy.

There is no simple expression for the energy per area in the 2D system [134]. Very
near to the Lifshitz point where the correlation length ξ0y vanishes [48], dimensional
arguments lead to an |ε|−1/4 behavior (for the 1D case a crossover from |ε|−1/2 to
|ε|−3/4 is predicted [120]).

Finally one can again compare the mean orientational-elastic energy of the critical
(discrete) Fourier-mode pair with the equipartition theorem. With (7.19) and the
0D version of (7.38) for a volume V = LxLyd and periodic BC in x and y one obtains
near threshold

〈E(E)
kc

+ E
(E)
−kc〉 =

kBT

|ε| β. (7.42)

The factor β comes from the electric degrees of freedom, both stochastic (relative
influence of charge fluctuations ∝ α(E)) and deterministic (λ0τ0 6= −1 due to two
comparable time scales). The relative influence β−1 of the electric degrees of freedom
onto the director fluctuations vanishes for P1 = 0, i.e., if the electric variables can
be adiabatically eliminated. A more general calculation for k 6= kc and 0 > ε ≥
−1 with (7.17) shows that β(k, P1, ε → −1) → 1, i.e., without external stress the
equipartition-theorem result is recovered.
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FIGURE 7.2. Influence of the electric degrees of freedom

(charge fluctuations and change of the relaxation time) on direc-

tor fluctuations of EHC for external frequencies much smaller

than the cutoff frequency and relatively small charge relaxation

times. The plot shows the enhancement factor β(kc, ε) for the

energy of the critical splay-bend Fourier mode with respect to

kBT/(2|ε|) which would be obtained by adiabatically eliminat-

ing the charge and neglecting charge fluctuations. The horizon-

tal axis denotes the reduced control parameter where ε = −1
(no external stress) corresponds to an equilibrium system. Pa-

rameter is the cell thickness d ∝ (τd/τq)
1/2. For ε → 0, β is

given by Eq. (7.41).

Figure 7.2 shows a plot of the enhancement factor β(kc, ε) as a function of ε for some
values of the cell thickness (P1 ∝ d−2).

Note that even for negligible charge fluctuations the conductivity and thus the
nonequilibrium property is essential since it influences the relaxation time. Without
electric conductivity, but leaving the other MBBA parameters unchanged, the sta-
bilizing effect of the negative dielectric anisotropy would lead to decreased instead
of enhanced fluctuations for increasing V0.
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7.5 Experimental results

A common difficulty in measuring thermal fluctuations in pattern-forming system
is their small magnitude, expressed by the prefactors Q

(R)
0 and Q

(E)
0 . To measure

the fluctuations directly, one needs a system with a favourable Q0 and as little
imperfections as possible, to be able to go very near threshold.

Both Q
(R)
0 and Q

(E)
0 can be increased by decreasing the thickness and Q

(R)
0 also by

decreasing ρm making gasses (ν comparable with fluids) the favourable RBC system.
A lower limit for the thickness in RBC is set by the temperature difference ∝ ν/d3

needed to reach the threshold together with the requirement that there is no freezing
at the top and boiling at the bottom. In EHC the critical voltage of the conductive
mode is independent of the thickness (at least as long as the ratio of the charge
relaxation time to the director relaxation time, P1 ∝ d−2, is much smaller than unity
[48]) and the limiting factor for d is electric breakthrough. In addition, for small d
the director relaxation time becomes comparable with τq, a regime which is not yet
investigated systematically.

In general the conditions for EHC are more favourable than in the RB systems.
So up to very recently EHC was the only system where thermal fluctuations could
be measured directly [97, 135, 113]. In reference [97] director fluctuations of a thin
(d = 13 µm) cell of MBBA with an aspect ratio of about 1000 (quasi-2D) were
determined with the shadowgraph method [39], i.e., by measuring intensity mod-
ulations of transmitted light. This method uses the dependence of the refractive
index on the director orientation. For small fluctuations around the equilibrium
alignment n0 = (1, 0, 0), the light modulations Ĩ(x, y, t) = I(x, y, t)/I0 − 1 are
proportional to the z integrated director bend, Ĩ = −δEHC∂xnz with nz(x, y, t) =
∫

dznz(r, t) and known shadowgraph sensitivity δEHC [39, 136]. If one normalizes
fnz to

∫

dzfnz = 1, the theoretically calculated structure function S(∆x,∆y,∆t) :=
〈Ĩ(x+∆x, y +∆y, t+∆t)Ĩ(x, y, t)〉 is related to the correlations of the amplitude
fluctuations in the case of stationary normal rolls by

S(∆x,∆y,∆t) = 2q2cδ
2
EHC〈A∗(x, y, t)A(x+∆x, y +∆y, t+∆t)〉

cos qc∆x. (7.43)

The photodetector integrated in y over a length Ly = 13.4d, which is larger than the
actual correlation length in y for typical ε values. So it measured in this direction
effectively the discrete Fourier component at ky = 0, Ĩ(x, t) = L−1

y

∫ Ly
0 dy Ĩ(x, y, t).

The measured 1D-correlations S(∆x,∆t) should correspond to the amplitude corre-
lations of an 1D system with cross-section dLy and periodic BC in y, i.e., effectively

to the 1D version of (7.37) with ∂y = 0 and a noise strength Q
(E)
1D = L−1

y Q
(E)
2D .

Recall that all considerations about fluctuations in EHC in this chapter are based
onto the SM. In the above system, however, one observes travelling waves above
threshold and consistent with this, the observed fluctuations oscillate in time, see
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Fig.4 of [97]. For all time delays the correlations were reflection symmetric in x
showing that they are caused by fluctuations of right and left travelling waves in
statistically equal proportions indicating a Hopf bifurcation [137].

In the simplest case this can be captured by assuming for the two waves (±ωc, kc, 0)
two independent 1D-stochastic amplitude equations of the form (7.37) with group-
velocity terms ±vg∂xA added on their left-hand sides. The structure function then
has two contributions of the form (7.43) with cos qc∆x replaced by cos(qc∆x∓ωc∆t).
Analytically calculated correlations of the amplitude equations [97] lead to a struc-
ture function which agrees, as function of space and time delay, very well with the
measured one.

The structure function shows the predicted symmetries and the increase of fluc-
tuation intensity and correlation lengths and times, as one approaches the threshold.
The equal-time correlations (7.22) for each of the waves, <A∗(x, t)A(x + ∆x, t)>

= 〈|A|2〉e−ξ|∆x| with 〈|A|2〉 = Q/(8τ0ξ0
√

|ε|) have the predicted correlation length

ξ = ξ0|ε|−1/2 and an intensity ∝ |ε|−1/2 consistent with the measured equal-time
structure function S(∆x, ∆t = 0). The decay of S(∆x = 0,∆t) with time delay is
also in good agreement with the prediction. The oscillations of S have about the
same wavelength and frequency as the deterministic pattern above threshold. In
addition the absolute fluctuation intensity agrees within a factor of about 1.3 with
the theoretical prediction (7.40). The measured intensity corresponds to βexp ≈ 1.44
while the theoretical prediction (7.41) can be taken from Fig. 7.2 yielding β = 1.1
for d = 13µm and ε = 0.

Similar good agreement is found in [135] by measuring the shadowgraph signal
in a MBBA cell with 23µm thickness. In agreement with (7.42) both the correlation
time and the intensity as obtained from the Fourier-mode pair with the critical wave
vector are ∝ |ε|−1. The measured absolute intensity, βexp = 1.3, was 30% above
equipartition-theorem estimates while the theory predicts β = 1.03.

Hörner et al [113] have measured spatial correlations of fluctuations in a cell filled
with the nematic Merck Phase V. For low external frequencies this material has a
(deterministic) bifurcation to oblique rolls, i.e., a degenerated bifurcation to zig and
zag rolls.
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FIGURE 7.3. Shadowgraph image of subctritical fluctuations

near the threshold of electroconvection of the nematic Merck

Phase V in a frequency regime where there would be oblique

rolls above threshold. (Courtesy of I. Rehberg and F. Hörner).

Figure 7.3 shows a snapshot of the resulting shadowgraph intensity. According
to theory the equal-time structure function (spatial correlation) has now two con-
tributions of the form (7.43) with cos qc∆x replaced by cos(qc∆x ± pc∆y) and the
amplitude equation has the general form (7.20) with real coefficients and vg = 0. The
spatial Fourier transform of the theoretically calculated structure function, S(kx, ky),
has four peaks at the wave vectors ±kzig and ±kzag. The structure function obtained
from Fig. 7.3 shows qualitative agreement with the theoretical prediction.

Recently, fluctuations were measured directly in effectively two-dimensional RBC
in gaseous CO2 at elevated pressures [131] and in an effectively one-dimensional con-
vection channel in a binary mixture of ethanol and water [138]. In the CO2 exper-

iment, Q
(R)
0 is larger than in liquids but nevertheless the measured signal required

extensive processing. As in the EHC experiments, the fluctuations were measured
with the shadowgraph technique. Here the refractive index depends on the density
and on the temperature via the expansion coefficient. The shadowgraph signal for
light, incident in the z direction, is Ĩ(x, y, t) = −δRBC∇2

⊥θ with θ =
∫

dzθ and known
sensitivity δRBC [131]. Near threshold the relevant contributions to the fluctuating
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pattern include all wave vectors with |k| ≈ kc. With fθ normalized to
∫

dzfθ = 1,
the modulation amplitude Ĩ = δRBCk

2
cψ is directly proportional to the amplitude of

the stochastic Swift–Hohenberg equation and the theoretically determined structure
function S(∆x,∆y,∆t) = δ2RBCk

4
c 〈ψ∗ψ〉 is given by the amplitude correlations. The

measured spatial Fourier transform of the equal-time structure function agreed well
with the theoretical prediction near threshold, S(k) = S0/((k− kc)2+ |ε|) [131] with
S0 = δ2RBCk

4
cQτ0/(2(2π)

2) from Eq. (7.19). In particular it is isotropic, large in a
ring of radius kc and the peak at kc is proportional to |ε|−1. In real space, both the
absolute intensity of the temperature fluctuations and the |ε|−1/2 behavior agreed
perfectly with the theoretical prediction ∝ ∫

d2kS(k) for high pressures where the
Boussinesq approximation holds. For lower pressures the experimental values were
up to 20% smaller.

In the experiment on binary mixtures [138], the fluctuations are observed in a
parameter regime where the first instability is a Hopf bifurcation leading to travelling
waves because these time–dependent patterns can be observed with a better signal–
to–noise ratio than stationary ones. The fluctuation intensity shows the correct
|ε|−1/2 behavior of 1D systems and the magnitude is of the same order as idealized
theoretical estimates.

So far I described direct measurements. A possibility to overcome the difficulties
with the small signal are indirect measurements where the fluctuations are enhanced
by some amplifying mechanism prior to measurement.

The amplification mechanism can be external by applying control–parameter
ramps in time going from sub- to supercritical values. As soon as the control param-
eter is supercritical, the small, initially subcritical, fluctuations grow exponentially
until they become measurable. Measurements on RBC with this method gave the
first experimental evidence of stochastic effects in pattern–forming systems [139, 140].
As in the direct measurements, the structure factor in Fourier space had a maximum
along a ring with radius kc. The intensity, however, was about a factor of 2 × 104

larger than predicted for thermal fluctuations.

Another possibility is internal amplification in space in the convectively unstable
regime in systems with a nonzero group velocity [123]. Above the convective insta-
bility fluctuations are amplified as they travel through the system. If one is also
above the absolute threshold, they would grow in the whole system to nonlinear sat-
uration and eventually the system would reach a deterministic attractor. Below the
absolute threshold, however, the propagation velocity of perturbations, determined
by the growth rate and the spreading by diffusion, is smaller than the group velocity
so that fluctuations are convected away faster than they can grow. So at least in
parts of the system the fluctuations are both linear and much larger than the sub-
critical ones, and the resulting ”noise–sustained structures” [132] can be measured.
Typically systems with nonzero group velocity have a Hopf bifurcation or are open
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systems, e.g., RBC or TCF with throughflow.

The Hopf bifurcation of RBC in binary–fluid mixtures with a negative separation
ratio [9] was used to measure fluctuations in an quasi–1D cell [141, 138]. Theoretically
this system is described by two stochastic 1D complex amplitude equations similar to
the ones used in EHC above. The dissipative effect of mass diffusion leads (compare
Eqs. (7.21) and (7.18)) to an additional term in the RBC fluctuation strength (7.27)
which has been calculated in [119] and was found to be small [142]. The interpretation
is difficult because the fluctuations described by these stochastic equations depend
strongly on the boundary conditions which in the experiment correspond to ramps
consisting of decreasing height on both sides of the cell. Analytic calculations with
an effective cell length [141] lead to a fluctuation intensity in accordance with the
experiment whereas numerical calculations taking into account more realistic BC by
introducing a space dependent control parameter at each side lead to fluctuation
intensities about two orders of magnitude smaller than the measured ones [143]. A
possible explanation of this large discrepancy is the exponential dependence of the
intensity on the assumed effective cell length in the analytic calculation together
with the fact that there is no obvious way to define this length.

Things are easier to interprete in open–flow systems where there is only one
travelling wave and the downstream BC is irrelevant (in the convectively unstable
regime information cannot travel upwards). Numerical simulations showed that the
fluctuations are even rather insensitive to the upstream BC. Even if one sets the
upstream fluctuations at the inlet equal to zero, the stochastic volume force would
create fluctuations which after a short distance from the inlet are nearly the same
as with more realistic equilibrium fluctuations at the inlet [121]. In any case the
fluctuations are amplified on their way through the system until they become mea-
surable and eventually saturate at the ”healing length”. In a way the experiments
in open–flow systems are the analog in space to the ramping experiments in time.
In the former, time is translated to space by the group velocity. Measurements of
the rms value of axial velocity fluctuations in TCF with through flow with a laser–
Doppler interferometer [121] agreed with theory in all aspects except the absolute
fluctuation intensity which was by a factor of 270 larger than the predicted value
ν2/d2 × [fz, fz]Q

(T )τ0/(4ξ0
√
−ε) for thermal fluctuations.

7.6 Discussion

In this chapter I tried to provide an understanding of fluctuations near pattern–
forming transitions in nonequilibrium extended systems starting from stochastic hy-
drodynamics, an approach formulated by Landau [68] to describe equilibrium hy-
drodynamic fluctuations in simple fluids. The rationale to extend this approach to
nonequilibrium systems is that it requires only local equilibrium which is fulfilled
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in many hydrodynamic systems which are far from global equilibrium. In addition
the separation of scales between the microscopic and macroscopic degrees of freedom
justifies the assumption that the fluctuating forces are δ correlated.

Fluctuating hydrodynamics makes definite predictions about the fluctuations as
a function of the quasi–dimensionality and the distance from threshold. The corre-
lation functions of the fluctuations oscillate as function of space and time separation
with about the same period as the deterministic pattern and below threshold they
retain all symmetries of the system. Correlation lengths and times, and the fluc-
tuation intensity, increase with the proximity to the deterministic threshold, with
scaling exponents which depend on the symmetries and the quasi–dimensionality.
This means that the fluctuations in real space consist of patches with the size of
about the correlation length, living for about one correlation time. Each patch is a
wave packet of one degenerate mode out of the uniformly distributed set of critical
modes. The fluctuations anticipate, in a way, the possible deterministic patterns
above the primary threshold.

In 1D systems, many of these features are analogous to equilibrium fluctuations.
The scaling exponents of correlation lengths, times and of the intensity are the same.
In 2D, pattern–forming systems with continous degeneracy (RBC or EHC at the
transition from normal to oblique rolls) offer new and fascinating symmetry classes
of transitions. If only one field is dynamically active (e.g., nz for normal rolls in
EHC with P1 → 0 or vz for RBC with P → 0), the average energy contained in the
fluctuations of one Fourier mode or, equivalently, the energy in a fluid element of
half the size of the correlation length in 1D systems, is |ε|−1 times the equipartition–
theorem fluctuations kBT/2. This is again as in equilibrium, for example below the
splay–bend Fréedericksz transition in planar EHC. Additional dynamically active
fields lead both to new fluctuating forces summarized in the terms proportional to
α(R), α(T ) and α(E) in Eqs. (7.29), (7.36) and (7.40) with (7.41), and to a determin-
istic influence on the relaxation rate, making (−λ0τ0) unequal to unity, from Sec. 4

(−λ0τ0) = 1 + 1.93P in RBC, 2.93τ
(T )
0 /τ

(R)
0 in TCF and 1 + 9.3τel/τd in EHC. The

net effect on the fluctuations can be increasing as in the case of charge fluctuations
in EHC, decreasing as for the temperature field in RBC, or dependent on a second
control parameter as in TCF.

The above predictions agree with experiments. One sees patches of zig and zag
rolls in the oblique–roll regime of EHC, areas of left and right travelling waves if
there is a Hopf bifurcation, and isotropically distributed roll directions in RBC in
simple fluids corresponding to a ring in k space.

The above features are predicted for any noise source if its correlations in space
and time are much smaller than the macroscopic scales. To show that thermal
fluctuations are involved and that stochastic hydrodynamics provides the correct
thermodynamical description of nonequilibrium systems near a phase transition, the
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absolute value of the fluctuation intensity must agree with the experiment. This is
the case in the direct measurements of the EHC and RBC systems described above.
[The fact that the measured fluctuations in the RBC experiments are up to 20%
smaller for low pressures, can probably be explained by using the non–Boussinesq
equations in Eqs. (7.21) and (7.18).]

An open question is the observed fluctuation intensity in the indirect experiments.
In the open-flow experiment [132], the observed fluctuation intensity is more than
two orders of magnitude too large; in the time-ramping experiments [139, 140] the
discrepancy is even four orders of magnitude, and in the binary-mixture experiment
using travelling waves as amplification mechanism [141] it is difficult to interpret.
An investigation primarily aimed at describing nonlinear transient patterns in the
splay Fréedericksz transition of NLCs with positive dielectric anoisotropy [144] shows
that in a situation similar to the above indirect measurements (jump of the control
parameter to above threshold) even in nematics the experimental noise strength is
much larger than that of thermal noise. Specifically the initial (subcritical) amplitude
of the homogeneous mode obtained from the experimental fit to the nematodynamic
equations is about two orders of magnitude larger than predicted by Eq. (7.42).
This is strikingly similar to the time-ramping experiments [139, 140] (the intensity
is equal to the square of the amplitude).

All this seems to indicate that the assumption of stochastic hydrodynamics to-
gether with local equilibrium is valid only in stationary situations. However, one has
to be aware that in all indirect experiments the logarithm of the noise strength rather
than the noise strength itself is measured. In the time-ramping experiments, errors
in determining the effective time difference from the initial subcritical fluctuations
to saturation contribute exponentially. The same is true for the effective travelling
length to saturation (”healing length” lh) in the open-flow and travelling-wave exper-
iments and, in all three indirect experiments, for the uncertainty in the distance from
the convective threshold. We take as an example the TCF experiment [132] in the
regime of convective instability 0 < ε ≤ εa. The fluctuation intensity is roughly e2βz

times the fluctuations at the inlet z = 0 where the spatial growth rate β increases
monotonically with ε and is essentially proportional to ε if one is not too close to
the absolute threshold [121]. If one assumes at the inlet a priori thermal equilibrium

fluctuations 〈θ2〉 = γQ with known constant γ (and not larger inlet fluctuations due
to additional experimental noise), the intensity at the nonlinear saturation for typical
threshold distances is about nine orders of magnitude larger. The fluctuations were
measured only in the region where the intensity is more than 0.01 times the satu-
ration value, so, experimentally, the strength of the fluctuating forces is essentially

inferred from the healing length lh by γQexp = 〈θ2(z = 0)〉 = e−2βlh〈θ2〉sat. With
known saturation fluctuations and assuming β ∝ ε, the error in the decadic loga-
rithm of the experimental noise strength, ∆(log10Qexp), is 9(∆ε/ε) and 9(∆lh/lh) due
to the relative errors in the threshold distance and the healing length, respectively.
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A relative error of 0.22 in one of these quantities would lead to a factor of 100 in
the measured noise strength. Note that β depends also on other parameters of the
amplitude equation like τ0 and ξ0 [121], whose errors contribute similarly.
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Chapter 8

Conclusion
Even if someone found the ultimate truth, he would not know.

Everything is interspersed with assumptions. K. R. Popper

Now I discuss some open questions and give suggestions for future research. The
main unresolved issue with the WEM is the unknown value of τrec which must be
rather long (of the order of 10 seconds). A direct determination of both τrec and the
mobilities is desirable, e.g., by measuring the transient current response to various
voltage signals in cells with well-defined boundary conditions (blocking electrodes)
[84, 86, 83]. Furthermore, one would like to know, at least for one material, the
complete set of the SM parameters, together with measurements of the threshold
(qc, pc, V c, ωH), of the frequency decrease dω/dε, and of all CGL parameters.

On the theoretical side, a (numerical) weakly-nonlinear analysis of the full set of
WEM equations is needed. In further steps, one could generalize the resulting two-
dimensional CGL to include the coupling to the other critical modes (e.g., couplings
between the amplitudes of right and left travelling rolls), and also to include couplings
to slowly-relaxing modes that are excited in higher order by the nonlinearities.

As discussed in Chapter 5.6, the role of the linear charge-carrier modes for pro-
ducing a Hopf bifurcation is reminiscent of the role of the concentration field for the
Hopf bifurcation in binary fluid convection. There, the nonlinearly excited concen-
tration modes were found to be important for the production of pulses [145, 146].
I expect, that coupled equations for the amplitudes of critical and slow nonlinear
modes will be similar to the ”extended CGL”, which was derived by Riecke [146]
to describe the dynamics of the pulses. Are these pulses related to the ”worms”
observed for low temperatures in I52 [30, 42]?

Finally, a nice feature of EHC is that the Hopf bifurcation is continuous and
that one observes spatio-temporal chaos (STC) right at onset [30]. It would be
fascinating to explain this in the framework of CGLs by the Benjamin–Feir instability
[11] enabling quantitative experimental tests of the predictions of one of the most
simple and generic equations producing STC.
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Appendix A

A.1 Material parameters for MBBA and I 52

Table A.1. Material parameters for MBBA at 25◦C [147, 148], and for I 52 at
30◦C− 60◦C [32] as used in Ref. [42]

Parameter MBBA I 52

Orientational K11 6.66 18.4 ∗

elasticities K22 4.2 12.65 ∗

in units of 10−12 N K33 8.61 23

Conductivities σ⊥ 1.0 0.28 · · · 1.41 &

in units of 10−8(Ωm)−1 σa 0.5 0.073 · · · 0.63 & ∗

Dielectric permittivities in ε⊥ 5.25 3.01 · · · 2.90 &

units of ε0 = 8.8542× 10−12 As
V m

εa -0.53 0.056(T − 63◦C)/(38◦C)

α1 -18.1 0.1γ1
∗

Viscosities α2 -110.4 −0.9γ1 †

in units of α3 -1.1 0.1γ1
∗

10−3Ns
m2

∗∗ α4 82.6 2η
α5 77.9 0.65γ1

††

α6 -33.6 −0.15γ1 ∗

mobilities in
units of 10−10m2/(Vs)

√

µ+⊥µ
−
⊥ 1.6 0.4 + 0.07(T − 30◦C)/(30◦C)

recombination rate (1/sec) τ−1rec ≈ 0.2&& ≈ 0.1&&

∗ Value fitted to the experimental threshold and roll-angle curves
∗∗ If not given in terms of γ1 or η
† α2 = α3 − γ1

†† Onsager relation α5 = α6 − α2 − α3
& Left value for 30◦C; right value for 60◦C, see Table A.2.
&& Fits of the WEM predictions to experiments
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As decribed in detail in Chapter 5, the mobility parameter is fitted to the mea-
sured Hopf frequencies as function of the external frequency (in I 52 for each tem-
perature). The recombination parameter was estimated in Chapter 6.

The rotational viscosity γ1, the bulk viscosity η = α4/2, and ε⊥ where measured
for I52 in Ref. [149] as function of the temperature. Interpolations to the tempera-
tures relevant in this work are given in Table A.2 below. The conductivity as function
of the temperature was measured in Ref. [30]. The anisotropy of the conductivity
was fitted, for each temperature, to the measured values of V c in the limit of small
external frequencies. All viscosities with the exception of the isotropic α4 = 2η are
assumed to have the same temperature dependence as γ1. The prefactors, in units
of γ1, were determined to fit the threshold and roll angles.

Table A.2 Temperature dependence of the material parameters of I 52

Temperature (◦C) 30 35 40 45 50 60

ε⊥(ε0) 3.01 2.99 2.98 2.96 2.94 2.90
γ1(10

−3Ns
m2

) 207 163 130 105 87 65
η = α4/2(10

−3Ns
m2

) 19.8 15.8 12.8 10.7 9.2 7.7
σ⊥(10

−8(Ωm)−1) 0.28 0.37 0.49 0.65 0.85 1.41
σa/σ⊥ 0.26 0.3 0.34 0.38 0.42 0.45

A.2 Linearization of the WEM equations

for nonzero diffusivities

and with respect to a nontrivial basic state

The WEM equations (3.18) and (3.19) are expressed in terms of α and D instead
of α̃ and D̃, where α and D are defined in the Eqs. (4.4) and (4.5). The resulting
equations are linearized around a nontrivial basic state of the functional form given
by Eq. (4.1). Denoting the z derivatives of the fields of the basic state with a prime
(δρ0 = δφ′′), the result for the Fourier modes with wavevector q = (q, p) is given by

P1∂t(ε̂qφ + εaE0iqnz)

= [−σ0σ̂q + σ′0∂z − 2Ds1σ̂q ε̂q]φ−
[

E0∂z + δρ0 + α−1Dd1σ̂q
]

σ (A.1)

+
{

−σaσ0E0 +D
[

α−1d1σaσ
′
0 + 2s1(σaδρ

′
0 − σ̂qεaE0)

]}

iqnz − P1δρ
′
0vz,

P1∂tσ = α {−αs1 [(E0ε̂q − δρ′0)∂z + δρ0(σ̂q + ε̂q + 2rε̂q)]

− d1 [σ0σ̂q − σ′0∂z +Ds1σ̂q ε̂q − rσ0ε̂q]}φ
− [αd1(E0∂z + δρ0(1− r)) +Ds2σ̂q + 2rσ0] σ

+ {αd1 [−σ0σaE0 +Ds1(σaδρ
′
0 − σ̂qεaE0) + rσ0εaE0] (A.2)
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+ α2s1E0 [−δρ0σa − εa(2δρ0(1 + r) + E0∂z)] +Ds2σaσ
′
0

}

iqnz − P1σ
′
0vz,

with the (homogeneous) BCs

[E0 − α−1Dd1∂z]σ + [σ0 − 2Ds1∂
2
z ]∂zφ = 0, (A.3)

[D∂z − αE0d1]σ − α[d1σ0 + 2αs1(δρ0 + E0∂z)]∂zφ = 0. (A.4)

The operators ε̂q and σ̂q are given by Eq. (5.10). The linearized director and
momentum-balance equations are given by the Eqs. (5.5) – (5.8) with the volume
force E0ε̂qφ in Eq. (5.8) replaced by (

√
2R cosω0t − δφ′0)ε̂qφ −δρ0φ′0. The electric

field is given by E0 =
√
2R cosω0t− δφ′0.

A.3 The 3 × 3 eigenvalue system of the one-mode

approximation of the linearized WEM equa-

tions

Inserting the adiabatically eliminated charge density (5.20), and the velocities (5.18)
and (5.19), into the Galerkin projection of the linearized WEM equations (5.4), (5.5),
and (5.6) with vx replaced by (i∂zvz − pvy)/q, leads to following eigenvalue system
for modes ∝ eλt,

(λ− λσ)σ
(0) + α̃2Rσ(eff)a iqn(0)z = 0, (A.5)

− RC2
z

σ
(eff)
a (1 + ω′2)

σ(0) + (λ− λz)iqn
(0)
z +

p

q

(

mzy∂t − λ0z
kzy
Kyy

)

qn(0)y = 0, (A.6)

p

q

[

RC2
y

σ
(eff)
a (1 + ω′2)

]

σ(0) +
p

q

[

myz∂t − λ0y

(

kzy
Kyy

+
R

R0y

)]

iqn(0)z

+(λ− λ0y)qn
(0)
y = 0, (A.7)

where

mzy = −
λ0z
Kzz





a2a
′
2ηzy

ηyyη
(eff)
z

+
α2α3I2
ηyyq



 , myz =
λ0y

λ0z

Kzz

Kyy

mzy. (A.8)

The growth rate λz of the SM for normal rolls is given by

λz = λ0z

(

1− R

R0z

)

, (A.9)

where R0z is given by Eq. (5.21) for p = 0.
The parameter R0y is given by

R0y =
Kyyηyyη

(eff)
z

a′2σ
(eff)
a ηzy

. (A.10)
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Bayreuth, (1995).

[77] M. Kaiser, Amplitudengleichungen für die elektrohydrodynamische Instabilität
in nematischen Flüssigkristallen, Phd dissertation, University of Bayreuth,
(1992).

[78] Eber, private communication.
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