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Abstract. We analyze detector data from several hundred traffic jams on freeways
in Germany, Holland, England, and the USA with respect to the nature of traffic
instabilities. By applying dedicated analyzing tools, we summarize the qualitative as-
pects in terms of the stylized facts of jam propagation. In the overwhelming majority
of all cases, the data are compatible with linear string instabilities of the convective

type, i.e., perturbations grow but eventually propagate out of the congested region.
We quantify the instability in terms of linear growth rate, wavelength of the oscilla-
tions, and propagation velocity as a function of the empirically determined bottleneck
strength. On the theoretical side, we derive analytical criteria for linear and convective
stability applicable to a wide range of microscopic and macroscopic models and divide
these models into five stability classes which uniquely determine the set of observable
spatiotemporal patterns in real systems. Finally, we show, by means of approximate
analytic solutions to systems with sustained localized noise (at the bottleneck) that
controversial phenomena such as the “pinch effect” can be quantitatively explained by
the phenomenon of convective instability using stability quantities that can be mea-
sured but also analytically derived from the corresponding microscopic or macroscopic
model.

1 Introduction

In spite of investigating traffic flow dynamics for decades, some fundamental
questions are not yet settled: Can the multitude of observed spatiotemporal
patterns of congested traffic be decomposed into precisely defined elementary
patterns? If so, into how many patterns, and what are their defining properties?
Are there two or three traffic phases? Are typical instabilities of traffic flow
of a nonlinear type requiring a finite perturbation for activation, or are they
linear? Can insights into stability properties of closed ring roads be transferred
to real open systems? Clearly, the last two questions are the most fundamental
since instabilities are the main building block for dynamic traffic phases and
spatiotemporal patterns.

In this contribution we show, by means of extensive empirical investigations
and a quantitative analytical analysis, that the concept of convective instability

may provide the missing link in understanding the traffic dynamics.
Section 2 presents qualitative aspects of the spatiotemporal evolution of con-

gested traffic patterns (the stylized facts) as a result of analyzing traffic data from
several freeways in Germany, Holland, England, and the USA. Section 3 quan-
tifies the stylized facts of extended congestions by analyzing a large database
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(containing more than 400 jams). The results are presented in form of scatter
plots of the growth rate, wavelength, and propagation velocity of the oscilla-
tions as a function of the bottleneck strength. The main analytical results will
be developed in the Sections 4 and 5. Section 4 gives compact criteria for lo-
cal instability, convective string instability, and absolute string instability for a
wide range of models and relates the patterns qualitatively to a newly formu-
lated “class diagram”. Finally, the observations of Sec. 3 are quantitatively and
analytically related to solutions of car-following models in open systems with
local sustained noise. The implications are discussed in Sec. 6.

2 Empirical Evidence

In this section, we will summarize the stylized facts of the spatiotemporal evo-
lution of congested traffic patterns, i.e., qualitative empirical findings that are
persistently observed on various freeways all over the world, e.g., the USA, Great
Britain, the Netherlands, and Germany [1–4]. We will not list facts that are not
directly related to the spatiotemporal evolution such as the wide scattering of
flow-density data [5], or the movement of upstream jam fronts [6,2].
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Fig. 1. Validation of the adaptive smoothing method. The ground truth (left) is com-
pared with an ASM reconstruction assuming a detector spacing of 2 km (horizontal
lines indicate detector locations).

A major difficulty for a systematic survey is the sparseness of the available
data. With the exception of a few well-investigated freeway sections, the dis-
tance between detector cross sections does not allow to obtain spatiotemporal
speed profiles by direct interpolation and smoothing. We therefore use a dedi-
cated scheme, the adaptive smoothing method (ASM) [7,4] which makes use of
some generally accepted properties of traffic flow to reconstruct the spatiotem-
poral profile from sparse data. To avoid circular reasoning (presenting facts that
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alrady have been assumed), we have validated the ASM against extremely dense
data (detectors every 100 m, sometimes 10 m) on the British motorway M42 near
London, which can de facto be considered as ground truth. With detector infor-
mation every two kilometers (cf. Fig. 1), the ASM could reconstruct the ground
truth in great detail and turned out to be robust with respect to parameter
changes [4]. This allows a systematic investigation resulting in the following list
of stylized facts:
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Fig. 2. Spatiotemporal dynamics of congestions on German freeways illustrating the
stylized facts of congested traffic.

1. Congestion patterns are typically caused by bottlenecks in combination with
a perturbation in the traffic flow. Analyzing about 400 congestion patterns
on the German freeways A5-North and A5-South (Fig. 3) did not bring
conclusive evidence of a single breakdown without a bottleneck [8]. The
bottlenecks may be intersections (Fig. 2(a)), uphill or downhill gradients
(the “Irschenberg” in Fig. 2(b) around x = 40 km), junctions (Fig. 2(b) at
41 km, or obstructions caused by accidents (Fig. 2(b) at x = 43.5 km in the
time period between 17:40 h and 18:15 h).

2. The congestion pattern can be localized or spatially extended. Localized con-
gestion patterns either remain stationary at the bottleneck, or move up-
stream at a characteristic speed ccong in form of isolated stop-ang-go waves.
Typical values of ccong are between −20 km/h and −15 km/h, depending on
the country and traffic composition [1], but not on the type of congestion.

3. The downstream front is either fixed at the bottleneck or moves with the char-

acteristic speed ccong. Both, fixed and moving downstream fronts can occur
within one and the same congestion pattern when the bottleneck becomes
weaker (Fig. 2(a) at x = 510 km) or ceases to exist (the accident in Fig. 2(b)).
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4. Most extended traffic patterns exhibit internal oscillations propagating up-
stream approximately at the same characteristic speed ccong. Consequently,
all spatiotemporal structures of congested traffic in the figures of this paper
(sometimes termed “oscillations”, “stop-and-go traffic”, or “small jams”),
move in parallel [9,10,1].

5. The frequency of the oscillations increases with the bottleneck strength. For
example, the strongest bottleneck in Fig. 2(a) is caused by the intersection
“München Nord”, and that in Fig. 2(b) by an accident.

6. The amplitude of the oscillations increases while propagating upstream. This
can be seen in all empirical data shown in this contribution, see also Refs. [11,2,12].
Consequently, the downstream boundary is often stationary or shows little
oscillations. At the upstream end of the congested area, the oscillations may
eventually become isolated “wide jams” (Fig. 1 before 16:00 h; some of the
congestions of Fig. 3), or remain part of a compact congestion pattern (Fig. 2,
and again Fig. 3).

7. Light or very strong bottlenecks may cause homogeneous congestions (Figs.
1(d) and 1(f) of Ref. [2]).

Fig. 3. Screenshot of a publicly available image database of congestions on the German
freeway A5. The database can be searched by criteria such as direction of travel, space
interval, time interval, weekday, cause of the congestion, or the type of traffic pattern.
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3 Quantifying the Propagation of Traffic Waves

One of the most controversial phenomena is an observed spatiotemporal struc-
ture called the “pinch effect” or “general pattern” [13]. In the light of the stylized

facts this spatiotemporal pattern follows from the Fact 6 (the oscillations grow
while propagating upstream) in combination with Facts 1, 3, and 4. To get
further insights, we have quantified the relevant stylized facts by a systematic
analysis of about 400 congested traffic patterns on the German Autobahn A5
[14] (see Fig. 3) focussing on the about 200 extended congestion patterns of this
database.

Figure 4 shows a set of measured speed time series for a typical extended
jam: While the detectors close to the bottleneck (at x = 482 km in Fig. 4(a))
show little oscillations (Facts 1 and 3), the oscillations grow in amplitude with
the distance to the bottleneck in the upstream direction (Fact 6). Furthermore,
the oscillations show a typical period (Fact 5), and they propagate with a certain
velocity (Fact 4). We have quantified each of these aspects as follows:
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Fig. 4. Speed time series of several detectors on the German A9 and an American
freeway [1]. Shown are deviations (oscillating curves) from the average speed (horizontal
baselines). The detector spacings are proportional to the spacings of the baselines.

• The propagation velocity ccong has been calculated by maximizing the sum
of cross correlation functions of speed time series of detector pairs {i, j} in
the congested region (at positions xi and xj , respectively), with respect to
the velocity c [1]:

ccong = arg max
c

∑

i

∑

j>i

Corr

[

Vi(t), Vj

(

t +
xi − xj

c

)]

. (1)

Notice that the time interval for calculating the correlation functions must
be restricted such that the time series are only evaluated during congested
or stop-and-go traffic.
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Fig. 5. Characteristic properties of the propagation of perturbations in congested traf-
fic. (a) Speed time series with a skewed time axis; (b)-(d) quantities of jam propagation
as a function of the speed near the bottleneck characterizing the bottleneck strength.

• The average period τ of the oscillations is given by the position of the first
nontrivial peak of the autocorrelation functions of detector time series, again
restricted to periods of congested traffic.

• The wavelength is given by Lwave = τ |ccong|.
• The average spatial growth rate σ̃ of perturbations is defined in terms of the

slope of the linear regression of the data points {(xi, ln |Ai|} consisting of
the location xi of the detectors and the logarithm of the amplitudes |Ai| of
the oscillations:

σ̃ =

∑

i xi ln |Ai| − nx ln |Ai|
∑

i x2
i − nx̄2

. (2)

• The corresponding temporal growthrate is given by

σ = ccongσ̃. (3)

For example, the detector data shown in the Figs 4(a) or 5(a) result in ccong ≈
−16 km/h, τ ≈ 6min (for small amplitudes; some waves merge while growing),
Lwave ≈ 1.6 km (for small amplitudes), σ̃ ≈ −0.4 km−1, and σ ≈ 6.4 h−1.

Using the above definitions, we have calculated the quantities ccong, σ, and
Lwave for the extended jams on the A5-South. In the Figures 5(b)-(d), they are
plotted as a function of the average speed Vcong of the detector nearest to the
downstream front, i.e., to the bottleneck. The speed Vcong serves as an observable
proxy for the bottleneck strength: The lower Vcong, the stronger the bottleneck.
Notice that, according to the Facts 3 and 6, the traffic flow at this location is
essentially stationary, so this speed is well defined.
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The analysis quantitatively confirms the stylized facts presented in Sec. 2.
Moreover, the local growth rates σ̃i = (ln |Ai| − ln |Ai−1|)/(xi − xi−1) resulting
from Eq. (2) for a pair of neighboring detectors do not depend significantly on
the amplitude, at least, if the oscillations can be distinguished from noise, and
if nonlinear saturation has not yet set in. This means, there is no empirical
evidence against the existence of linear instabilities in congested traffic.

4 Stability Analysis

There are several stability types pertaining to traffic flow (cf. Fig. 6). Local in-

stability implies that sustained oscillations already arise when a single vehicle
follows a leader driving at a constant speed. Much more restrictive and relevant
is the string instability of a platoon of vehicles following each other. Here, a
positive feedback between gaps and velocities of adjacent vehicles leads to grow-
ing oscillations even if each driver is perfectly able to follow a single leader with
damped or even without oscillations [15]. Morover, there are two subtypes: If the
string instability is convective, the growing oscillations propagate in only one di-
rection (against the driving direction). Consequently, in realistic open systems,
they eventually leave the road section. In contrast, when the string instabil-
ity is absolute, perturbations propagate in both directions eventually leading to
sustained oscillations everywhere. Notice that this distinction does not exist in
closed systems (ring roads).
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Fig. 6. Visualization of the different stability concepts relevant for traffic flow in form
of time series (left column) and spatiotemporal dynamics (right column).

Furthermore, the instabilities discussed above may be linear (can be trig-
gered by an infinitesimal perturbation), or nonlinear (a finite perturbation is
necessary). In the latter case, one also speaks of metastability. Remarkably, in
describing the observed congestion patterns, the distinction between the abso-
lute and convective nature of instabilities will prove to be more important than
the distinction between linear and nonlinear instabilities.
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We now give the condition for string instability for general car-following
models1 with equation of the form

dxα

dt
= vα, (4)

dvα

dt
= amic (sα(t), vα(t), vα−1(t)) . (5)

Here, vehicle α−1 precedes vehicle α, and the spatial gap sα = xα−1−xα− lα−1

is given by the vehicle distance minus the length of the leading vehicle. The
microscopic acceleration function amic(s, v, vl) characterizes the specific model
and describes the acceleration as a function of the gap, the own speed and the
speed vl of the leader. The homogeneous-stationary equilibrium state of such
models is given by the condition amic

(

s, ve(s), ve(s)
)

= 0 defining the equilibrium
speed vα(t) = ve as a function of the gap s (microscopic fundamental diagram).
This state is string instable if

v′

e(se) >
1

2

(

∂amic

∂vl

∣

∣

∣

∣

e

− ∂amic

∂v

∣

∣

∣

∣

e

)

, (6)

where the subscript e stands for “taken at equilibrium”. A typical example of
such a model is the Intelligent Driver Model (IDM) [16] which is characterized
by the acceleration function.

aIDM(s, v, vl) = a

[

1 −
(

v

v0

)4

−
(

s∗

s

)2
]

, s∗ = s0 + vT +
v(v − vl)

2
√

ab
, (7)

where v0 is the desired speed, a and b are comfortable accelerations and de-
celerations, s0 denotes the minimum gap, and T the desired time headway in
car-following situations. For this model, the instability criterion (6) becomes

(v′

e)
2 >

a(s0 + veT )

s2
e

[

s0 + veT

se

+
vev

′

e√
ab

]

. (8)

For the limiting case of very congested traffic, se → s0, this simplifies to a <
s0/T 2.

If homogeneous traffic flow is linearly string instable, there exists a range
of wave numbers k where the associated wave solutions ∝ eλ(k)t+iαk of the
linearized equations (where λ is the analytically given complex growth rate and
i is the imaginary unit) display a positive growth rate σ(k) = Re(λ(k)). In
particular, there is a certain finite wave number k0 = arg maxk σ(k) associated
with the maximum growth rate σ0 = σ(k0) > 0. It can be shown that an
approximate criterion for convective instability is given by

0 < σ0 ≤
v2

g

2D2
, (9)

1 A similar stability criterion can be given for general (local or nonlocal) macroscopic
models formulated in terms of PDEs.
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where the group velocity vg and the dispersion coefficient D are given in terms
of derivatives of the complex growth rate λ(k) = σ(k) + iω(k):

vg = ve +
ω′(k0)

ρe

, D2 = −σ′′(k0)

ρ2
e

[

1 +

(

ω′′(k0)

σ′′(k0)

)2
]

, ρe =
1

l + se

. (10)

It should be noted that this criterion implies that the linear string instability
always starts as a convective one. Often, the instability remains convective for
the whole range of equilibrium densities (Fig. 7(a),(b)). For typical congested
situations, vg is of the order of (but not equal to) the propagation velocity
ccong, and D is of the order of 500m2/s. Simulations with the IDM show that
criterion (9) defines the actual density range of convective instability, e.g. that
of Fig. 7(d), with errors below 1%.
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Fig. 7. Class diagram of the IDM for v0 = 120 km/h, s0 = 2 m, and b = 1.5 m/s2 as a
function of the time gap T and acceleration a, and stability diagrams for three points
of the class diagram corresponding to the class 1b, 2a, and 2b.

The overall stability properties of a traffic flow model are given by the sta-

bility diagram denoting the stability type for all possible equilibrium states
parametrized by the associated density ρ = 1/(se + l) (see Fig. 7(a),(b),(d)).
Generally, one obtains several density regions with the boundaries 0 < ρ1 <
ρ2 ≤ ρcv < ρ3 ≤ ρ4 ≤ ρmax. Homogeneous traffic flow is absolutely stable for
ρ < ρ1 or ρ ≥ ρ4, metastable for ρ ∈ [ρ1, ρ2] or [ρ3, ρ4], convectively unstable for
ρ ∈ [ρ2, ρcv], and absolutely unstable for ρ ∈ [ρcv, ρ3]. Furthermore, the number
and types of traffic patterns do not only depend on the set of observed stability
types, but also on the relative position of the stability boundaries with respect
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to the density at (static) capacity ρK = arg maxρ Qe(ρ). This leads to following
stability classes (cf. Fig. 7):

• Class 1a: Traffic at capacity is (linearly) unstable, ρ2 < ρK , and remains
so for all higher densities, ρ3 = ρ4 = ρmax. Furthermore, ρK < ρcv < ρmax,
i.e., the instability is absolute for comparatively light congested traffic and
becomes convective for higher densities.

• Class 1b: As class 1a, but traffic restabilizes for heavily congested traffic,
ρ3 < ρmax.

• Class 2a: Traffic at capacity is metastable or stable, and unstable for suffi-
ciently high densities, ρK < ρ2 < ρ3 = ρmax, In most cases, the instability
is purely convective, but a small region of absolute instability is possible as
well.

• Class2b: As class 2a, but with restabilization, ρ3 < ρmax.
• Class 3: Unconditionally stable.

The stability class depends on the model and on the parameters. Some mod-
els can even be “tuned” to any stability class. Figure 7 displays such a “class
diagram” for the IDM.

The stability and class diagrams are crucial for a possible explanation of
the observed extended traffic patterns. The reasoning is as follows: After a traf-
fic breakdown at a bottleneck, the average traffic flow of the congested state
upstream is determined by the dynamic capacity Kdyn = K(1− ǫ) of the bottle-
neck (which is smaller than the static capacity by a capacity drop of the order
of ǫ = 10%). Consequently, the congestion pattern depends on the stability
properties of congested traffic at flow Kdyn:

For stability class 1, small bottlenecks (high values of Kdyn) correspond
to absolutely unstable traffic, i.e., congested traffic is non-stationary everywhere
and consists of a sequence of stop-and-go waves triggered by the bottleneck
(TSG) [2]. The smaller the bottleneck, the lower the difference Qout − Kdyn

between the outflow of the waves and the bottleneck capacity, i.e., the longer it
takes until there is a sufficient number of vehicles to trigger the next stop-and-go
wave. Conversely, the wave frequency increases with the bottleneck strength until
the stop-and go waves are no longer isolated but part of oscillatory congested
traffic (OCT). For class 1b, traffic becomes stable for very strong bottlenecks
resulting in homogeneous congested traffic (HCT). For class 1b, OCT (with
very high frequencies) persists until the complete standstill.

For stability class 2, congested traffic is linearly stable for very small bot-
tlenecks, so a new high-flow homogeneous states (homogeneous synchronized
traffic, HST) is possible [2]. However, since traffic generally is metastable in this
situation, stronger perturbations can lead to stop-and-go waves as well. When
increasing the bottleneck strength, one obtains OCT (class 2a) or the sequence
OCT-HCT (class 2b), similarly to stability class 1. Unlike class 1, however, the
instability is nearly always a convective one, so perturbations grow, but only in
upstream direction. As will be shown analytically in the next section, this leads
to essentially stationary traffic flow near the bottleneck even if sustained finite

perturbations are present.
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For stability class 3, congested traffic is always essentially homogeneous,
and the dynamics similar to that of first-order (Lighthill-Witham-Richards)
models [6].

5 Sustained Perturbations

Finally we will show, by means of approximate but quantitative analytical calcu-
lations, how convectively unstable flow in combination with sustained perturba-
tions (caused, e.g., by mergings at onramps or offramps) will lead to stationary
flow near the source of the perturbations, and growing oscillations further up-
stream. To this end, we investigate the statistical properties of the model (5)
with an additional localized noise term,

dvα

dt
= amic (sα(t), vα(t), vα−1(t)) +

ξα

vα

δ(xα(t)). (11)

Here, δ(x) is the δ-distribution, i.e.,
∫

dxf(x)δ(x) = f(0) for any localized func-
tion f , and ξα are realizations of independent standard-normally distributed
stochastic variables. Thus, whenever a car crosses x = 0, its speed is abruptly
changed by ξα.

Since we are interested in the collective properties of oscillations, it is suf-
ficient to investigate the statistical properties of an approximate macroscopic
speed field V1(x, t) representing the local deviations from the equilibrium speed
ve. In the linear regime, the realizations of this velocity field are given by

V1(x, t) ∝
∞
∫

0

dτ G(x, τ)ξ(t − τ), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t − t′). (12)

The “Green’s function” G(x, t) is defined by the linear spatiotemporal response
of equilibrium flow to a single localized perturbation of unit strength at x = 0,
t = 0. A long calculation shows that approximatively G(x, t) = Re G̃(x, t), where

G̃(x, t) = exp(ik0x−iω0t)A(x, t), A(x, t) = exp

[(

σ0 −
(

vg − x
t

)2

2λ2

)

t

]

, (13)

with λ2 = −σ′′(k0) + iω′′(k0). Figure 8(a) shows the Green’s function for traffic
flow at the limit between convective and absolute instability. To assess the va-
lidity of the various approximations leading to Eq. (13), the analytical result is
compared with the simulation of the same system (cf. Fig. 8(b)) resulting in a
nearly perfect agreement.

The stochastic properties of the solution (12) (a realization is shown in Fig. 9
(a)) can be described by the structure function

S(x, x′, t, t′) = 〈V1(x, t)V1(x
′, t′)〉. (14)

Inserting Eqs. (12) and (13) and dropping some prefactors leads to an approx-
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Fig. 8. Traffic flow at the limit between convective and absolute string instability
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Fig. 9. (a) A realization of the solution (12) to the stochastic equation (11) for the
IDM with a = 1.11 m/s2 and the other parameters as in Fig. 8; (b) the corresponding
Green’s function.

imate analytic expression for the speed variance:

S(x, x, t, t) ∼ 1
√

1 − 2D2σ0

v2
g

exp

[

2xvg

D2

(

1 −
√

1 − 2D2σ0

v2
g

)]

. (15)

This expression is valid if vgx/(2D2)
√

1 − 2σ0D2/v2
g ≫ 1, i.e., sufficiently far

away from the threshold to abolute instability and from the source of the per-
turbations. (The left-hand side is equal to x/850m for the parameters of Fig. 9).

We observe that, in spite of linear instability and sustained noise, the variance
remains finite in the convectively unstable regime. Furthermore, the variance de-
pends only on x, i.e., the solution is stationary in the stochastic sense. The oscil-
lations grow in the upstream direction (notice that vg < 0). From Eq. (15), one
can extract a quantity that is observable from the realizations V1(x, t), Fig. 9(a),
or from traffic data, Fig. 5(a): The distance L in which the amplitude grows by
a factor of e is given by

L =
D2

vg

(

1 −
√

1 − 2D2σ0

v2
g

)−1

. (16)

For the IDM parameters of Fig. 9, one obtains a physical wavelength 2πk0/ρe =
1.5 km, a maximum growth rate σ0 = 3.0 h−1, and L = 2.5 km. This is consistent
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with the spatial growth rate σ̃ = 1/L = 0.4 km−1 as determined from Fig. 5(a).
Notice that the growth rate σ̃vφ = 4.4 h−1 inferred from detector time series
by multiplying the spatial growth rate with the observable phase velocity (see
Fig. 5(a)) is higher than the maximum linear growth rate σ0.

6 Conclusion

In order to gain qualitative and quantitative insight into the nature of instabil-
ities of traffic flow, we have analyzed a large database of congested traffic and
other traffic data around the world. Besides summarizing the qualitative aspects
in form of a list of “stylized facts”, we give quantitative detail of the key fac-
tors of congested traffic instabilities (wavelength, growth rate and propagation
velocity as a function of the bottleneck strength) by a systematic analysis of
about 400 congested patterns. Notably, we found positive perturbation growth
rates for most instances of congestions and no empirical evidence against the
existence of linear instabilities.

To understand the observations, one must relate them to mathematical mod-
els and theoretical concepts, preferably analytically and quantitatively ones. To
this end, we define all relevant theoretical stability concepts and give analytic
criteria for local instability, convective string instability, and absolute string in-
stability of car-following models formulated in continuous time. Although some
approximations have been used in deriving the analytical threshold between
convective and absolute instability, it has been verified by simulations within
observation uncertainty (about 1 % of the width of the convectively unstable
region). Ongoing investigations show that the same analysis is possible for local
and nonlocal macroscopic models formulated as partial differential equations.

We found new insight into the nature of traffic flow instabilities on two levels.
On the qualitative level, we could relate the observed stylized facts, i.e., spa-
tiotemporal patterns, to three “stability classes” (and two subclasses) derived
from the stability diagram, i.e., from the set of density regions where a certain
stability type applies. The original “phase diagram” of Ref. [17] was derived for
stability class 1b, but other classes can lead to different sets of patetrns, and also
to new patterns. The stability class depends not only on the model but also on
the parameters. Moreover, the Intelligent Driver Model (IDM) can assume any
stability class which leads to a “class diagram” in parameter space.

On the quantitative level, we have analytically related the observables of
the “pinch effect” (oscillations of detector time series) with convectively unsta-
ble flow in an open system with sustained local noise (caused, e.g., by manda-
tory lane changes at lane closings, onramps, or offramps). The analytic solution
(which, again, is verified by simulations) corresponds to stationary traffic flow
near the bottleneck even for linearly unstable traffic in the presence of sustained

perturbations, and to growing oscillations further upstream. When evaluated for
the IDM, the associated wavelengths, growth rates and propagation velocities
are in agreement with that derived from the data.
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In conclusion, there is much evidence that the largely neglected concept of
convective instability provides the final missing link in explaining the dynamics
of congested traffic flow.
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