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Abstract: We present a new method to obtain spatio-temporal information from aggregated
data of stationary traffic detectors, the “adaptive smoothing method”. In essential, a nonlin-
ear spatio-temporal lowpass filter is applied to the input detector data. This filter exploits the
fact that, in congested traffic, perturbations travel upstream at a near-constant speed, while
in free traffic, information propagates downstream. As a result, one obtains velocity, flow, or
other traffic variables as smooth functions of space and time. Applications include traffic-state
visualization, reconstruction of traffic situations from incomplete information, fast identifica-
tion of traffic breakdowns (e.g., in incident detection), and experimental verification of traffic
models, and even a short-term traffic forecast.

We apply the adaptive smoothing method to observed congestion patterns on several German
freeways. It manages to make sense out of data where conventional visualization techniques
fail. By ignoring up to 65 % of the detectors and applying the method to the reduced data
set, we show that the results are robust. The method works well if the distances between
neighbouring detector cross sections do not exceed 3 km.
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1 Introduction

Compared to simulation approaches, the evaluation of traffic data recently attracts the
interest of more and more scientists. Reasons for this are the availability of better data
and the need to verify and calibrate models. Both, theoretical [10, 20, 26] and empirical
[4, 7, 8, 13, 16–18, 21, 24, 28] studies indicate that the phenomenology of congested traffic
is more complex than originally expected. Researchers have proposed a rich spectrum
of traffic states [10, 16, 17, 20], hysteretic or continuous temporal or spatial transitions
among them [11, 13, 16, 17, 19, 26], and fluctuations or a erratically appearing dynamics
play a significant role [2, 17, 22, 24, 27]. In order to make sense out of this, it is increasingly
important to have suitable ways of data processing, in order to extract the information
relevant for scientific investigations or specific applications. Here, we will propose a three-
dimensional data-evaluation method allowing to visualize the spatio-temporal dynamics
of traffic patterns along freeways.

The developed “adaptive smoothing method” filters out small-scale fluctuations and adap-
tively takes into account the main propagation direction of the information flow (i.e.
the dominating characteristic line), which have been determined by means of a spatio-
temporal correlation analysis in other studies [25]. The temporal length scale of the
smoothing procedure can be as small as the sampling interval, while the spatial length
scale is related to the distance between successive detectors, which can be up to 3 kilo-
meters long.

By “filter” we just mean a transformation of the data with specific properties. Here,
we use a spatio-temporal lowpass filter, i.e., only (Fourier) components of low frequency
can pass the filter, while high-frequency contributions are considered as fluctuations and
smoothed out. One particular feature of our filter is that it is nonlinear and adaptive to the
traffic situation in distinguishing free and congested traffic, as the propagation direction of
perturbations differs. The results are three-dimensional visualizations of traffic patterns,
which are quite robust with respect to variations of the filter parameters and very helpful
in obtaining a clear picture of the systematic spatio-temporal dynamics.

Therefore, this method is suitable for the reconstruction of traffic situations from in-
complete information, fast identification of traffic breakdowns (incident detection), and
experimental verification of traffic models. First results support the phase diagram of traf-
fic states occuring at bottlenecks [12, 28], which, apart from free traffic, predicts pinned
or moving localized clusters, spatially extended patterns such as triggered stop-and-go
waves, and oscillating or homogeneous congested traffic, or a spatial coexistence of some
of these states [10, 9, 26]. The respectively occuring spatio-temporal pattern depends on
the specific freeway flow and bottleneck strength, but also on the level of fluctuations,
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as these can trigger transitions from, for example, free traffic to localized cluster states
[9, 10, 28]. We do not see sufficient support for one “generalized pattern” [15] that would
always be observed when traffic flow breaks down.

2 Description of the Method

The adaptive smoothing method is a data processing method for obtaining traffic variables
as smooth functions of space and time out of stationary traffic data. It has following
heuristically motivated properties:

1. In case of free traffic, perturbations (of, e.g., velocity or flow) move essentially into
the direction of traffic flow [6]. More specifically, they propagate with a characteristic
velocity cfree at about 80% of the desired velocity V0 on empty roads [25]. Therefore,
at locations with free traffic, perturbations with propagation velocities near cfree

should pass the filter.

2. In case of congested traffic, perturbations propagate against the direction of traffic
flow with a characteristic and remarkably constant velocity ccong ≈ −15 km [3, 16].
With modern data analysis techniques, it has been shown that such propagation
patterns persist even in “synchronized” congested traffic flow, where they are hardly
visible in the time series due to a wide scattering of the data in this state [6]. So,
for high traffic densities or low velocities, the filter should transmit spatio-temporal
perturbations propagating with velocities near ccong more or less unchanged.

3. The filter should smooth out all high-frequency fluctuations in t on a time scale
smaller than τ and spatial fluctuations in x on a length scale smaller than σ. The
parameters τ and σ of the smoothing method can be freely chosen in a wide range
(cf. Table 1).

Let us assume that aggregated detector data zin
ij are available from n cross sections i at

positions xi where j ∈ {jmin, · · · , jmax} denotes the index of the aggregation intervals.

Usually, the aggregation interval

∆t = tj − tj−1 (1)

is fixed (between 20 s and 5 min, depending on the measurement device). A typical value
for German highways is ∆t = 1 min.
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The components of zin
ij represent the desired aggregated quantities as obtained from cross

section i during the time interval j. Typical examples include the average velocity Vij, the
vehicle flow Qij, the occupancy Oij, or some derived quantity such as the traffic density
ρij. The input data zin

ij can represent either averages over all lanes or quantities on a given
lane.

The adaptive smoothing method provides estimates z(x, t) for all locations x ∈ [x1, xn]
between the positions of the first and the last detector, and for all times t ∈ [tmin, tmax].
Extrapolations (in the sense of a short-term traffic forecast) will also be discussed. Without
loss of generality, we assume x1 < x2 < · · · < xn, and a traffic flow in positive x-direction.

The core of our “adaptive smoothing method” is a nonlinear filter transforming the discrete
input detector data zin

ij into the smooth spatio-temporal functions z(x, t). To satisfy the
first two requirements mentioned above, we write the filter as

z(x, t) = w(zcong, zfree)zcong(x, t) +
[

1− w(zcong, zfree)
]

zfree(x, t). (2)

This is a superposition of two linear anisotropic lowpass filters zcong(x, t) and zfree(x, t)
with an adaptive weight factor 0 ≤ w ≤ 1 which itself depends nonlinearly on the output
of the linear filters as discussed later on.

The filter zcong(x, t) for congested traffic is given by

zcong(x, t) =
1

Ncong(x, t)

n
∑

i=1

jmax
∑

j=jmin

φcong(xi − x, tj − t)zin
ij , (3)

with

tj = tmin + j∆t, (4)

and the normalization factor

Ncong(x, t) =
n
∑

i=1

jmax
∑

j=jmin

φcong(xi − x, tj − t). (5)

This normalization guarantees that a constant input vector z in
ij = z0 for all i, j is trans-

formed into a constant output function with the same components: z(x, t) = z0. Notice
that the normalization depends on both, location x and time t.
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The analogous expression for the lowpass filter zfree(x, t) for free traffic is

zfree(x, t) =
1

Nfree(x, t)

n
∑

i=1

jmax
∑

j=jmin

φfree(xi − x, tj − t)zin
ij (6)

with

Nfree(x, t) =
n
∑

i=1

jmax
∑

j=jmin

φfree(xi − x, tj − t). (7)

x i+1
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Figure 1: Visualization of the effects of linear homogeneous filters with the kernels φfree(x, t)
and φcong(x, t), respectively. The shaded areas denote the regions considered in the
calculation of a data point at (x, t). Triangles denote the mainly contributing input
data sampled in free traffic, squares the ones sampled in congested traffic.

The kernels φcong(x, t) and φfree(x, t) of the linear homogeneous filters do the required
smoothing and are particularly transmissible for perturbations propagating with the typ-
ical velocities ccong and cfree observed in congested and free traffic, respectively (cf. Fig.
1).
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If the propagation velocity of the perturbations was zero, the filter should only perform
the smoothing. We chose the (non-normalized) exponential function

φ0(x, t) = exp

(

−
|x|

σ
−
|t|

τ

)

. (8)

Instead, one could apply other localized functions such as a two-dimensional Gaussian.
However, it turned out that the exponential had more favourable properties in our appli-
cation.

The linear filter for nonzero propagation velocities can be mapped to φ0(x, t) by the
coordinate transformations (cf. Fig. 1)

x = x′, t = t′cong +
x

ccong

= t′free +
x

cfree
. (9)

Thus, we obtain for the kernels of the linear anisotropic filters

φcong(x, t) = φ0(x
′, t′cong) = φ0

(

x, t−
x

ccong

)

, (10)

φfree(x, t) = φ0(x
′, t′free) = φ0

(

x, t−
x

cfree

)

. (11)

Figure 2 shows the action of the filters zcong(x, t) and zfree(x, t) for the velocity fields
Vcong(x, t) and Vfree(x, t).

Finally, we define the nonlinear adaptive weight function w(zcong, zfree) ∈ [0, 1]. Obviously,
we must have w ≈ 1 for congested traffic, and w ≈ 0 for free traffic, so we need some a
priori estimate of the traffic situation at the point (x, t).

Congested traffic is characterized by a high traffic density and low average velocity. Since,
in contrast to the density, the velocity can be directly measured with stationary detectors,
we chose the velocity to determine the a priori estimate. Different possibilities to estimate
the velocity at point (x, t) are:

• The measured velocity Vij of the detector cross section whose position xi is nearest
to x in the time interval j containing the actual time t,

• the velocity Vcong(x, t) as calculated with the “congested-traffic” filter zcong accord-
ing to Eq. (3) with kernel (10) (assuming a priori congested traffic),
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Figure 2: Typical velocity fields Vfree(x, t) (top) and Vcong(x, t) (bottom) obtained by applica-
tion of the filters zfree(x, t) and zcong(x, t) to traffic data of a section of the German
freeway A9 South.

• the velocity Vfree(x, t) as calculated with the “free-traffic” filter z free according to
Eq. (6) with the kernel (11),

• or some combination of the above estimates.

The first way to estimate the velocity is subject to errors, if the typical length scale
λ of occuring stop-and-go structures is not larger than the distance ∆xi between two
neighbouring detectors. At this point, it is crucial that propagating structures in congested
traffic, especially stop-and-go waves, are very persistent. It has been shown [14] that they
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can propagate through freeway intersections or other inhomogeneities nearly unchanged,
passing all perturbations of free traffic on their way (see, e.g., Fig. 10). Therefore, whenever
at least one of the estimates indicates congested traffic, the weight function should favour
the filter for congested traffic. Specifically, we assume

w(zcong, zfree) = w(Vcong(x, t), Vfree(x, t)) =
1

2

[

1 + tanh

(

Vc − V ∗(x, t)

∆V

)]

, (12)

where

V ∗(x, t) = min

(

Vcong(x, t), Vfree(x, t)

)

. (13)

Vc and ∆V are parameters that can be varied in a wide range.

If not explicitely stated otherwise, for all simulations in the following section we will use
the parameters specified in Table 1. We will also show that the four parameters ccong,
cfree, Vc and ∆v can be varied in a wide range without great differences in the output.
In this way, we show that the proposed adaptive smoothing method does not need to be
calibrated to the respective freeway. One can take the values from Table 1 as a global
setting.

The smoothing parameters σ and τ have the same meaning and the same effect as in
standard smoothing methods, e.g., Eqs. (22) and (23) in Ref. [28].

In summary, the proposed “adaptive smoothing method” is given by Eq. (2) with the
nonlinear weight function (12), the filter (3) with normalization (5) and kernel (10) for
congested traffic, the filter (6) with normalization (7) and kernel (11) for free traffic, and
the smoothing filter (8). Table 1 gives an overview of the six parameters involved and
typical values for them. The adaptive smoothing method includes the following special
cases:

• Isotropic smoothing resulting in the limits cfree → ∞ and ccong → ∞ (for practical
purposes, one may chose cfree = ccong = 10

6 km/h);

• only filtering for structures of congested traffic in the limit Vc → ∞ (for practical
purposes, one may set Vc À V0 with V0 being the desired velocity);

• only filtering for structures of free traffic for Vc = ∆V = 0;

• consideration of the data of the nearest detector only, if σ = 0;

• application of the actual sampling interval of the detectors, if τ = 0, cfree →∞ and
ccong →∞. (To avoid divisions by zero, zero values of σ, τ , and ∆V are replaced by
very small positive values in the software).
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Parameter Typical Value Meaning

σ 0.6 km Range of spatial smoothing in x

τ 1.1 min Range of temporal smoothing in t

cfree 80 km/h
Propagation velocity of perturbations in
free traffic

ccong −15 km/h
Propagation velocity of perturbations in
congested traffic

Vc 60 km/h Crossover from free to congested traffic

∆V 20 km/h Width of the transition region

Table 1: Parameters of the “adaptive smoothing method” defined by Eqs. (2)–(13), their inter-
pretation, and their typical values.

3 Application to German Freeways

We will now discuss data from the German freeways A8-East and A9-South near Munich,
and of the freeway A5-North near Frankfurt. In all cases, the traffic data were obtained
from several sets of double-induction-loop detectors recording, separately for each lane,
the passage times and velocities of all vehicles. Only aggregate information was stored
with an aggregation interval of ∆t = 1 min. We will use the following input data z in

ij :

• The lane-averaged vehicle flow

Qij =
L
∑

l=1

nl
ij

L∆t
, (14)

where nl
ij is the vehicle count at cross section i during time interval j on lane l. The

considered sections of the freeways have L = 3 lanes in most cases.

• The lane-averaged mean velocity

Vij =
L
∑

l=1

Ql
ijV

l
ij

Qij

, (15)

where V l
ij is the average velocity at cross section i during time interval j on lane l.
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• The traffic density determined via the formula

ρij =
Qij

Vij

, (16)

as occupancies were not available for all freeways.

Figure 3 shows an example of a complex traffic breakdown that occurred on the freeway
A8 East from Munich to Salzburg during the evening rush hour on November 2, 1998.
Two different kinds of bottlenecks were relevant, (i) a relatively steep uphill gradient from
x = 38 km to x = 40 km (the “Irschenberg”), and (ii) an incident leading to the closing
of one of the three lanes between the cross sections D23 and D24 between t =17:40 h
and t =18:10 h. For further details, see Ref. [28]. Figure 3(c) shows the traffic density
using the proposed data processing method with the parameters specified in Table 1. For
comparison, (b) shows the result of conventional isotropic smoothing ignoring the speed of
information propagation, cf. Ref. [28]. While the structures in the free-traffic regions are
nearly the same in both plots, the new smoothing method gives a better reconstruction
of the congested traffic patterns.

Since the exact traffic state is unknown in any case, it is of course impossible to exactly
quantify the meaning of a “better reconstruction”. In particular, it cannot be proven that
Fig. 3(c) provides a better estimate of the real situation than Fig. 3(b), but heuristic
arguments make a strong case for that. First, the adaptive smoothing method reflects
observed facts regarding the propagation velocity of congestion fronts. Furthermore, as
we will show later on, its output is (within certain limits) also robust with respect to
the amount of provided input information: Omitting the data of every other detector
generally does not change the output of our method significantly, which is not the case
for the conventional method (cf. Fig. 6). Both methods are consistent, i.e., in the limit
of vanishing distances between neighboring detector stations (and zero smoothing), the
output will converge to the actual traffic state. So it is reasonable that the robustness
with respect to variable input information gives a clue about how much this convergence
process has progressed. Thus, a heuristic measure for the quality of reconstruction is the
robustness of the output with respect to omitting some detectors as sources for input
information.

In contrast to the conventional method, our proposed method can resolve oscillations with
wavelengths λ comparable to or smaller than the distance ∆xi between two neighbouring
cross sections as illustrated for the three stop-and-go waves propagating through the whole
displayed section (λ ≈ 2 km). Notice that the conventional method generates artifacts for
this example.
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Figure 3: Complex congested traffic pattern on the German freeway A8-East from Munich
to Salzburg during the evening rush hour on November 2, 1998. (a) Sketch of the
freeway. (b) Plot of the spatio-temporal density ρ(x, t) using conventional smoothing
(resulting for the setting cfree = ccong = 106 km/h). (c) Plot of the same data as
calculated with the adaptive smoothing method.
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The congestion patterns caused by the uphill gradient (the “wings” in Fig. 3(b), (c))
have larger characteristic wavelengths and are resolved, at least partially, also with the
conventional method.
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Figure 4: Time series of the empirical density, approximated by means of Eq. (16), for several
cross sections.

For comparison, we plot time series of some cross sections in Figure 4. Let us consider
more closely the jammed traffic patterns caused by the temporary bottleneck associated
with the incident. While the fluctuations are irregular at detector D22 (about 1.2 km
upstream of the aforementioned incident), they grow to three stop-and-go waves further
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Figure 5: Time series of the empirical velocity data determined via Eq. (15) for cross section
D20.

upstream, cf. the arrows in Fig. 5. However, due to measurement errors and other errors
in determining the density [9], the time series of the density is very noisy, especially
that of cross section D20. The adaptive smoothing method suppresses this noise without
suppressing the structure of the pattern.

To check, whether there are significant patterns in the data of detector D20 at all, we
plot the velocity data at D20 as well (Fig. 5). In contrast to the density, the velocity
is measured directly resulting in less noise. One clearly sees three dips corresponding to
three stop-and-go waves which confirms the results of the “adaptive smoothing method”.

As a further check that the structures shown in Fig. 3(c) are not artifacts of the data
processing, we tested the method for a reduced data set. Figure 6 shows the result using
only the even-numbered detectors as input, whose time series are plotted in Fig. 4. The
main structures remain nearly unchanged, particularly, the three stop-and-go waves prop-
agating through the whole section. Notice that the whole plot is based on data of only
four cross sections, and that the data are extrapolated in the upstream direction over a
distance of nearly 2 km.

We now apply the adaptive smoothing method to data from a section of the freeway
A9-South near Munich. There are two major intersections I1 and I2 with other freeways.
Virtually every weekday, traffic broke down to oscillatory congested traffic upstream of
each of these intersections. (For details, see Ref. [28]).

Figure 7 (b) shows the inverse of the velocity, 1/V (x, t) for a typical congested situation.
When plotting 1/V (x, t), the structures of congested traffic comes out more clearly than
for the density. The method indicates that there are small density clusters in the region
508 km ≤ x ≤ 510 km between about 8:30 am and 9:30 am which disappear around
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Figure 6: Spatio-temporal density ρ(x, t) as in Figure 3, but using only the data of cross sections
D16, D18, D20, and D22 as input (cf. Figure 4): (a) isotropic smoothing, (b) adaptive
smoothing method.

x = 508 km. These structures cannot be identified with the conventional smoothing
method (see Fig. 7(c)), which just shows a hilly pattern.

Figure 7(b) is an example for the spatial coexistence of homogeneous congested traffic (a
short stretch around x = 510 km), oscillating congested traffic (around x = 509 km), and
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Figure 8: Same data and same processing method as in Figure 7(c), but with (a) a propagation
velocity of ccong = −12 km/h instead of -15 km/h (b) ccong = −20 km/h, (c) with
the crossover parameter Vc = 40 km/h instead of 60 km/h.

stop-and-go waves (around x = 507 km). This may be a three-dimensional illustration of
the so-called “pinch effect” [13, 18], but we do not observe a merging of narrow clusters
to form wide moving jams. The narrow structures of short wavelengths rather disappear.
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This may be an artifact of our smoothing method, so that video data are required to
get a more detailed picture. Simulations of this spatial coexistence, however, indicate that
narrow clusters rather disappear than merge, namely when they do not exceed the critical
amplitude in an area of metastable traffic [26].

Notice that the bottleneck causing this congestion is located at about x = 510 km implying
that it is caused by weaving traffic and slowing down at an off-ramp, not by an on-ramp
as is most often the case on German highways.
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Figure 9: Short-term traffic forecast with the adaptive smoothing method. Shown is a detail
of the congestion on the A9-South, cf. Fig. 7. Left, pink region: Short-term forecast.
Right: Reference

Now we demonstrate that the method is robust with respect to reasonable parameter
changes. Figure 8(a) shows the result for an assumed propagation velocity of ccong =
−12 km/h instead of -15 km/h. In plot (b), we assumed ccong = −20 km/h instead. In
both cases, the results are systematically better than with the isotropic procedure. Since
the propagation velocity of perturbations in congested traffic is always about ccong = −15
km [5, 16, 23, 25], one can take this value as a global setting.

Due to the comparatively high magnitude of the propagation velocity cfree, the related
time shifts in the transformation (9) for free traffic are small. Therefore, the method
is insensitive to changes with respect to this parameter. It turned out that taking the
isotropic limit cfree →∞ nearly gives the same results.
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Figure 10: Freeway A5-North from Frankfurt to Kassel during the evening rush hour on August
7, 1998. (a) Sketch of the freeway. (b) Data reconstruction of the velocity using all
detectors D10–D26. (c) Reconstruction using a reduced data set of only 6 of all 17
detectors used in (b).

The crossover parameters Vc and ∆V can be varied within reasonable limits as well. As
an example, Fig. 8(c) shows the result after changing the crossover velocity from Vc = 60
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km/h to Vc = 40 km/h.

Now we show that, under certain circumstances, the adaptive smoothing method enables
short-term traffic forcasts. Figure 9 shows the onset of the traffic congestion on the A9-
South (cf. Fig. 7). In the left plot, we assumed that the actual time is 8 : 50 h (data are
available only for t <= 8 : 49 h) and predict the traffic for the next 20 minutes (pink
region). For reference, the right plot shows the result of the adaptive smoothing method
when using the complete data set.

As a result, propagating structures in both free and congested traffic can be predicted
for up to 20 minutes. However, the method cannot be applied for forecasting stationary
fronts. To predict these as well, the method has to be expanded to include information
propagating with vg = 0.

Finally, we applied the method to isolated moving localized clusters and pinned localized
clusters observed on the A5-North near Frankfurt (see also [1]). This freeway is partic-
ularly well equipped with detectors, so that the typical length scales of the observed
structures are always larger than the distance between neighbouring detectors. However,
we obtained nearly the same results when using only the even-numbered detectors or only
the odd-numbered detectors as input. Figure 10 shows that even a further reduction of
the information to only 35% of the detectors yields good results.

4 Summary and Outlook

We have proposed a new “adaptive smoothing method” for the three-dimensional visu-
alization of spatio-temporal traffic patterns, which takes into account the characteristic
propagation velocities observed in free and congested traffic.

Let us shortly compare it with some other means to enhance the visualization of spatio-
temporal structures of traffic data. Already in 1995, Cassidy and Windower proposed a
simple axis skewing of a sequence of time-series plots making use of the constant prop-
agation velocity of congested traffic structures [3]. In Fig. 4, this would correspond to a
rescaling of the time axis such that the arrows indicating the congested structures would
appear at the same values of scaled time for all four time series. This is a special case
of the adaptive smoothing method for the parameter values τ = 0 and Vc → ∞. Notice,
however, that the method is not “adaptive” in this case.

Recently, two model-based methods (ASDA and FOTO) have been proposed [1]. They are
based on the three-phase theory of Kerner [13] and relate each spatio-temporal point (x, t)
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Figure 11: Contour plots of the stop-and-go waves shown in Fig. 7. Top: Isotropic smoothing.
Bottom: Same data using the adaptive smoothing method. Left: Inverse of the
velocity. Right: Velocity with inverted color gradation.

with one of the three phases. Sometimes an additional forth “pinch region” is distinguished
as well. In contrast, the adaptive smoothing method gives estimates of the traffic variables
(velocity, flow, or density) itself at any point (x, t). Thus, the method does not depend on
the unsettled question whether there are only three phases as suggested by Kerner [13],
or more phases as suggested by the phase diagram [9, 28].

Finally, one may expect that using spatio-temporal contour plots and “optimizing” the
color-gradation scale for the displayed variable may enhance the visibility of small struc-
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tures in the same way as when applying the adaptive smoothing method. Figure 11 shows
four ways of representing identical data with contour plots, namely the velocity on the
A9-South (cf. Fig. 7). Clearly, different color gradations can change the appearance of the
same data, e.g., from “isolated moving jams” (left column) to an “extended congested re-
gion with propagating structures” (right column). However, when using isotropic smooth-
ing (top row), not a single of the contour lines gives a reasonable clue of the structures.
They all show artificial wiggles suggesting oscillations in the propagation speed of the
structures. Thus, no gradation scheme will correctly visualize the moving structures itself
without calibration.

In contrast, the “adaptive smoothing method” is robust with respect to variations of its
parameters (cf. Fig. 8), so that its application to new freeway sections does not require
calibration. In principle, it would be possible to determine the parameters (such as the
propagation velocity of perturbations) locally (e.g., by means of a correlation analysis).
However, the results would look less smooth and regular, as the small number of data
to determine the local parameters would be associated with considerable statistical er-
rors. Consequently, a large part of the variations in the local parameters would not reflect
systematic variations of the parameters. Thus, both the local and global parameter cal-
ibration may produce artifacts, but it is advantageous to use global parameter settings.
Moreover, there is empirical support for surprisingly constant propagation velocities cfree

and ccong of perturbations in free and congested traffic. The parameters Vc and ∆V are
related to the transition from free to congested traffic and, therefore, can also be well
determined. The spatial and temporal smoothing parameters σ and τ can be specified
according to the respective requirements. Suitable parameters allow a good representa-
tion of traffic patterns even when the distances between successive detectors are about 3
kilometers.

We point out that the suggested “adaptive smoothing method” itself can be applied to cal-
ibrate the characteristic propagation velocities cfree and ccong. For this purpose, the ranges
σ and τ of spatial and temporal smoothing are chosen small. The optimal propagation
velocities minimize the offsets in the propagation patterns.

The aim of the method is to reconstruct the spatio-temporal traffic data from incomplete
information as well as possible to allow a better understanding of the complex traffic
dynamics. Potential applications are, for example, traffic state visualization, incident de-
tection, experimental verification of traffic models, or short-term traffic forecast. Our
method could be further improved by taking into account information about the traffic
dynamics such as the continuity equation or a suitable equation for the average vehicle
velocity as a function of space and time.
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