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ABSTRACT

We propose  a  new methodology  for  calibrating  Wiedemann-99 vehicle-following parameters  for
mixed  traffic  (different  conventional  vehicle  classes)  based  on  trajectory  data.  The  existing
acceleration  equations  of  the  Wiedemann model  are  modified  to  represent  more realistic  driving
behavior.  Exploratory  analysis  of  simulation  data  revealed  that  different  Wiedemann-99  model
parameters could lead to similar macroscopic behavior, highlighting the importance of calibration at
the  microscopic  level.  Therefore,  the  proposed methodology is  based on optimizing performance
measures at the microscopic level (acceleration, speed, and trajectory profiles) to estimate suitable
calibration parameters. Further, the goodness of fit for the observed data is sensitive to the numerical
integration method used to compute vehicles’  velocity and position.  We found that the calibrated
parameters  using  the  proposed  methodology perform better  than  other  approaches for  calibrating
mixed  traffic.   The  results  reveal  that  the  calibrated  parameter  values  and,  consequently,  the
thresholds that delineate closing, following, emergency braking, and opening regimes, vary between
two-wheelers and cars. The window (in the relative speed vs. gap plot) for the unconscious following
is larger for cars while the free flow regime is more extensive for two-wheelers. Moreover, under the
same relative speed and gap stimulus, two-wheelers and cars may be in different regimes and display
different acceleration responses. Thus, accurate calibration of each vehicle’s parameters is essential
for developing micro-simulation models for mixed traffic. The calibration analysis results of strict and
overlapping staggered car-following signify an impact of staggered car-following compared to strict
car-following which demands separate calibration for strict and staggered following.

Keywords: "mixed traffic", "Wiedemann-99 model", “VISSIM”, "microscopic calibration", 
"trajectory data".
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1. INTRODUCTION

Microscopic traffic flow models represent traffic in greater detail  and generate more performance
measures than macroscopic or mesoscopic models. They enable evaluating a wide range of traffic
interventions and scenarios prior to their implementation. Moreover, they reflect the dynamic and
random nature of the transportation system (1). Therefore, they are robust and cost-efficient tools for
modeling them. 

A microscopic traffic flow model consists of sub-models that describe human driver behavior such as
gap-acceptance, speed adaptation, lane-changing, ramp merging, overtaking, and car-following. The
latter, on which we focus here, describes the interactions with preceding vehicles in the same lane
including the special case of free flow with no interactions (2). 

One of the critical elements of using microscopic models is calibration. The value of the simulation
models' various parameters is determined to match the observed real traffic behavior. As no single
traffic model can represent all the traffic conditions, every model must be adapted to local needs using
real-world data. Hence, parameter calibration in simulation applications is critical to replicate field
driving behavior.  This study focuses on calibrating a widely-used psychophysical vehicle-following
model (Wiedemann-99 (W-99) model)  for India’s mixed traffic conditions using vehicle trajectory
data.

The W-99 (3) model has been widely used in traffic microsimulation for both lane-based and
non-lane-based conditions  (1, 4–12). However, this model's use in non-lane-based states will
be substantially different from lane-based conditions and requires careful calibration. These
differences arise, in particular, from the presence and composition of additional vehicle types
such  as  (two-wheelers  or  auto-rickshaws,  different  static  and  dynamic  characteristics  of
vehicles,  and a lack of strict  lane discipline.  As a result,  vehicles are free to occupy any
available lateral position on the road space. Moreover, smaller vehicles (two-wheelers) often
utilize gaps between larger vehicles in the traffic stream (13). Another critical aspect of the
non-lane-based mixed traffic condition is the possible difference in the following  behavior
when the subject vehicle is strictly behind a leading vehicle versus when it is overlapping and
staggered compared to the vehicle ahead (14).  

A recently proposed model for lane-free mixed traffic  (15) provides a generalized framework for
extending conventional car-following models (including the Wiedemann car-following model) to a
fully  two-dimensional  microscopic  model.  In  the  presence  of  multiple  leaders  and  staggered
following, this framework assumes, with good results, that the longitudinal dynamics depends on the
leader with the strongest interaction, only, and that the repulsive force remains unchanged as long as
there  is  a  lateral  overlap,  i.e.,  the  longitudinal  acceleration reverts  to  that  of  the  underlying car-
following model. One goal of the present analysis is to test this assumption by distinguishing between
the strict and staggered following.

The key feature for calibration of mixed traffic conditions is the response of the driver of a subject
vehicle to the vehicles present in the neighborhood and their maneuvers. One should note that the
model parameters may vary based on leader, follower, and surrounding vehicle types and their speeds
and positions (16). There is a growing body of work on the calibration of various microscopic models
for mixed traffic using multiple models (5,  6,  8–13,  16–20).  The analytical forms of some of the
Wiedemann model equations are not easily accessible in the literature, making the calibration at the
trajectory level difficult. As a result, very few of these studies attempted to analyze the errors entailed
in the calibration process of a Wiedemann model and its impacts on the accuracy of results at the
trajectory level (21).

In light  of  the above motivations and gaps in the literature,  this  paper investigates the following
objectives. 
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 Propose  and implement  an  optimization-based  procedure  for  calibrating  the  W-99 model
vehicle-following parameters using trajectory data of mixed traffic

 Propose  modifications  of  the  acceleration  equations  to  represent  more  realistic  driving
behavior.

 Evaluate alternative numerical integration methods for prediction of speed and position at the
trajectory level

 Evaluate the proposed calibration with other calibration methods reported in the literature
 Analyze differences in the vehicle-following behavior of two-wheelers and cars in mixed

traffic.
 Investigate differences in parameters between ‘strict’ and ‘overlapping’ following situations

for selected vehicle types

The paper  is  organized as  follows.  Section 2  provides  a  brief  review of  the  W-99 model  and a
synthesis of the literature with this study's objectives. The rationale for calibration of the W-99 model
using trajectory data is presented in Section 3. In Section 4, we describe the data, and in Section 5 the
calibration methodology. The salient results and findings are discussed in Section 6, followed by a
few concluding remarks in Section 7. 

2.  LITERATURE REVIEW

The W-99 model is first presented in Section 2.1, followed by a synthesis of the literature on the
calibration of car-following models in Section 2.2.

2.1 Wiedemann Car-Following Model

As a psychophysical model, the W-99 model  (3) uses thresholds or action points, where the driver
changes his/her behavior at discrete time points. Drivers change their response to the local situation
(gap, speed, or relative speed) only when these thresholds are reached (2). This model’s concept is
that the faster  moving drivers approaching slower vehicles start decelerating when they reach their
perception threshold. However, due to imperfections in estimating speeds, the speed may become
smaller than that of the leader.  So, the driver may accelerate slightly again after reaching another
threshold (7). The combined effect of the thresholds and estimation errors leads to a hysteresis when
plotting the trajectory in the space given by the relative speed and the gap. Wiedemann (22) defined
the  relative  speed  between  the  lead  and  following  vehicles  as  the  stimulus,  which  triggers  the
following vehicle’s reaction. Using different  perception thresholds,  four  different  driving regimes
were proposed. 

In the free-flow regime, the subject vehicle is not influenced by any other leader; the driver tries to
maintain the desired speed and uses a speed-dependent maximum acceleration to reach the desired
speed.

In the closing-in regime, the driver has perceived a slower leader and continuously decelerates till the
speed matches the leader’s speed (the relative speed becomes  zero), and the gap equals the desired
gap. Then, the driver enters the following regime.

In the following regime, the driver of the subject vehicle unconsciously follows the leader trying to
maintain an ideal gap and zero relative speed using comparatively low accelerations or decelerations. 

In the emergency braking regime, if the following distance falls below a critical threshold, the driver
reacts  by  applying  the maximum deceleration (within  vehicular  capabilities)  to  avoid  a  potential
collision. 

Figure  1  shows  the  boundaries  of  these  regimes,  which  are  defined by  following  six  different
perceptual thresholds:
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 AX: the desired distance between two vehicles in a stopped condition, 
 ABX:  the desired minimum safe  following distance in  moving state,  as  a  lower  limit  of  the

following regime, 
 SDX: the maximum following distance as the upper limit of the following regime, 
 SDV:  the  points  at  long  distances  (more  than  SDX)  where  drivers  perceive  that  they  are

approaching slower vehicles, 
 CLDV: the points at short distances (less than SDX) where drivers perceive that their speeds are

higher than their lead vehicle speeds and 
 OPDV: the points at short distances (less than SDX) where drivers perceive that they are traveling

slower than their leader. 

Figure 1 Schematic representation of Wiedemann Model (22)

The W-99 model  (3) is  calibrated  using  the  driving  behavior  parameters  (CC parameters);  these
parameters are defined based on regime classification thresholds.  The description and the default
value of CC parameters are given in Table 1. 

Table 1: Wiedemann-99 parameters (1, 4, 7)

Parameter
s

Description Default Value(1)

CCO The desired gap between two vehicles in a stopped condition 1.5 m

CC1 Time gap following the driver keeps in for a safety in moving state 0.9 s

CC2 Range of gap between vehicles in the following regime 4 m

CC3 The time between the beginning of  deceleration after  perceiving of
slow-moving leader to start the unconscious-following behavior

-8 s

CC4 Speed difference  during  the following process.  CC4 controls  speed
differences during the opening process (Negative relative speed),

-0.35 m/s

CC5 Speed difference  during  the following process.  CC5 controls  speed
differences in the closing process (Positive relative speed).

0.35 m/s

CC6 Influence  of  distance  on  speed  oscillation  during  the  following
condition

11.44 (ms)-1
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CC7 Actual  acceleration  during  oscillation  in  the  unconscious-following
regime

0.25 m/s2

CC8 Desired  acceleration  when  the  vehicle  starting  from  the  standing
condition and

3.5 m/s2

CC9 Desired acceleration at 80km/hr. However, it is limited by maximum
acceleration for the vehicle type.

1.5 m/s2

2.2 Calibration of Wiedemann Car-following Models in Heterogeneous Traffic  
Many studies  (1, 4, 7, 23) have calibrated the Wiedemann parameters for homogeneous traffic flow
data. Some of them have calibrated a single parameter set for all vehicle classes. In most studies (8–

12, 17, 18) calibration procedures are based on matching the macroscopic performance measures from
a simulation package (e.g., VISSIM) such as flow, density, speed, or delays with field data, primarily
due to data limitations of cross-sectional video measurements.  Other studies (24–26) used test track
data or synthetic data for calibration of the vehicle-following models, and hence the applicability of
the parameters to real-world traffic is unclear.

While trajectory data have been used to calibrate other vehicles following models such as the Gipps
model (27) or the IDM (28), presumably due to the more straightforward equations involved, very few
studies  (23)  focus on calibrating Wiedemann car-following models using trajectory data based on
microscopic performance measures such as speed profiles of individual vehicles. This lack of studies
is  attributable partly due to limitations of data collected using location-based sensors,  which give
measurements at only selected cross-sections. 

About mixed traffic, a growing number of studies have investigated the calibration of various vehicle-
following models such as Krauss (29), Gipps (27), IDM (28), and W-99 (3). Again, the majority are
based on macroscopic measures of performance. The mixed traffic flow model (MTM) is proposed as
a generalized framework for car-following (15). A few other studies (13, 16, 19, 20) aim to calibrate
other models, such as Gipps’s model and the IDM using field data. Still, they do not explicitly capture
the differences in driving behaviors across regimes (following, closing. Emergency braking, opening,
and  free  flow)  sufficiently.  Very few  studies  (6,  7) have  used  microscopic  trajectory  data  for
calibrating W-99 models  in  mixed traffic  but  use  heuristic  or  data-driven procedures  to  estimate
vehicle-following parameters. Two essential concerns with these procedures include: the parameter
estimates are not directly linked to differences between observed and computed trajectories  at the
microscopic level (position, speed, acceleration profiles of individual vehicles over time) , and the
quality of the resulting parameters is difficult to assess. Thus, there is a need for using optimization-
based procedures to calibrate psychophysical models for mixed traffic using trajectory data. This will
enable evaluating the effect of the model parameters on the deviation between observed vs. estimated
speed, acceleration, and position profiles. Furthermore, in the context of mixed traffic, there is a need
to understand whether, and to what extent, the W-99 parameters vary with the vehicle type (two-
wheelers, cars, etc.) Another question is whether the parameter values found by trajectory calibration
are comparable to those found with macroscopic calibration Finally,  the influence of the kind of
following (strict and staggered), specifically regime thresholds, also needs investigation in the context
of the W-99 model.  

In light of the above gaps, this study focuses on the W-99 car-following model's calibration using
real-world trajectory data under heterogeneous and non-lane-based (mixed traffic) conditions. In this
study, the W-99 model's acceleration equations are used for trajectory estimation rather than VISSIM
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generated data. W-99 parameters are calibrated by microscopic criteria such as the deviation between
observed vs.  estimated speed,  acceleration,  and position profiles  at  a microscopic  level  in  mixed
traffic data. 

3. RATIONALE FOR CALIBRATING W-99 MODEL USING TRAJECTORY DATA

This  section analyses the  effect  of  different  sets  of  microscopic vehicle-following parameters  for
mixed traffic on the resulting macroscopic traffic flow performance measures (average speed, flow,
densities). 

A study stretch (245 m) from a three-lane midblock section (described in Section 4) is considered for
this analysis. Three different sets of the calibrated parameters values are input into the VISSIM traffic
simulation software and macroscopic and microscopic measures (vehicle level position, speed, and
acceleration profiles) are obtained for each set. Parameter sets 1, 2, and 3 (cf. Figure 2) are obtained
by applying heuristics based on macroscopic criteria as reported in the literatures  (6,  7,  30).  The
vehicular composition and vehicle dimensions (average length and width of each vehicle class) are
taken from Kanagaraj et al. (31). Kinematic parameters (Maximum acceleration/deceleration, desired
acceleration/deceleration, free-flow speed) are taken from Arasan and Koshy (32), Asaithambi et al.
(17), and Kashyap et al.  (14).  The differences in the CC parameters and associated threshold values
across the sets are depicted in Figure 2 (for a constant leader speed of 10 m/s). 

Figure 2. Wiedemann thresholds plots for different CC parameters

           

Table 2: Kinematic Parameters of Mixed Traffic Flow

Vehicle class TW Car Bus LCV 3W

Maximum Acceleration (m/s2) 2.5 2.1 1.4 1.4 1.1

Desired Acceleration (m/s2) 1.35 1.5 0.89 0.89 1.01

Maximum Deceleration (m/s2) -4.8 -4.2 -4 -4 -3.8
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Desired Deceleration (m/s2) -4 -3.2 -2.8 -2.8 -3.4

Free Flow Speed (m/s) 13.8 13.6 12.5 12.5 11.5

The simulation model is run for a study period of 30 minutes for 100 different random seeds for a
given set of Wiedemann parameters. The volume, density, and average speed for each vehicle class
are calculated, and the procedure is repeated for different sets of Wiedemann parameters. 

A set of pair-wise t-tests are performed for equal means of speed and density. In all sets, the equality
of mean speed cannot be rejected (p-values were 0.2, 0.36, and 0.16 for CC set 1 and CC set 2, CC set
1 and CC set 3, CC set 2 and CC set 3, respectively). The mean densities are also not significantly
different across the parameter sets (p-values were 0.58, 0.54, and 0.34, respectively, for the above
pairs).  Thus,  the  different  cc  parameter  sets  yield  statistically  similar  macroscopic  performance
measures, despite the significant difference in microscopic behavior.

Trajectories  of  simulated  data  generated  using  the  same  input  volume,  speed,  and  acceleration
distributions as explained above with the same random seed and different W-99 parameters (CC Sets
1, 2, and 3) are plotted in Figure 3. These trajectories are for the same single lane and for the same
time interval  for all  sets  of  W-99 parameters.  The macroscopic measures such as average speed,
density, and volume of 100 replications of each set of CC parameters for three lanes study stretch
(described in Section 4) are noted in the following plot. Major differences in the trajectories at the
same time across different CC sets are marked with circles A, B, and C.

From left-hand circles (A) of each trajectory plot, we can see that, 
1A – Trajectories are close to each other
2A- Trajectories are very scattered than 1A and 3A. 
3A – There is a difference in the slope of some trajectories also some vehicles with some delay at
the start. 

From Central circles (B) of each trajectory plot, we can see that, 
1B – Trajectories are very close to each other and some vehicles are crossing trajectories of other
vehicles
2B – Vehicles in the circle have varied speed, some vehicle is showing delay at time 750. 
3B – Vehicles are scattered as compared to 1B and 2B.

From the Right-Hand side circles (C) of each trajectory plot, we can see that, 
1C – Most vehicles are moving at the same speed as trajectories are parallel, some vehicles are
crossing trajectories of other vehicles
2C – Vehicles are very close to each other for time 810 to 820 and there is some lag in a vehicle

starting at time 820 
3C – Vehicles are close to each other than 1C but less close than 2C and lagged behavior of 
vehicles started at 820 is different from 2C.

These results indicate that different CC parameters show significantly different microscopic behavior
but  result  in  similar  macroscopic  behavior.  Therefore,  CC parameters  need to  be  calibrated at  a
microscopic level to have consistency at that level.
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Figure 3. Trajectory Plots of Simulated Data for different sets of CC parameters

4. DATA COLLECTION 

Video data were collected from a six-lane divided urban arterial road at the Maraimalai Adigalar
Bridge in Saidapet, Chennai, India by Kanagaraj et al. (31). The selected section (Figure 4) is a bridge
with a uniform road width. There are no nearby intersections, bus stops, parked vehicles, and other
side  friction  that  may  affect  drivers’  behavior.  Furthermore,  there  is  no  interaction  between  the
vehicle traffic and pedestrians; the study section’s width is 11.2m, and the length of the study section
is 245m.

Figure 4. Snapshot of study section (31)

The coordinates, dimensions, and class of all vehicles in the video sequences for 30 minutes between
2:45 PM and 3:15 PM were obtained using a trajectory extractor. Data consists of a total of 3016
vehicles of 6 different classes. Data were recorded at a resolution of 0.52 s. (31)
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4.1 Descriptive Statistics of Data 

Traffic  data  consists  of  1703  (57%)  motorised  two-wheelers  (TW),  802  (27%)  Car,  367  (12%)
auto/three-wheelers, 95 (3%) Bus, 40 (1%) Light Commercial Vehicles (LCV) and 9 (0.29%) Heavy
Commercial Vehicles (HCV). The collected dataset includes 3016 vehicle trajectories with a total of
130137 data points. 

For the given data, vehicular trajectories are drawn as time-space plots.  Figure 5 shows sample 82
trajectories of cars and 171 trajectories of two-wheelers for the same period. The vehicle trajectories
have different slopes reflecting different speeds. Intersecting trajectories denote passing on either side.
From both plots, we can see that there is different behavior of both vehicle classes; there is much
variation in TW trajectories' slopes while that of the cars are comparatively steady. Furthermore, TWs
have other values for the  desired speed,  the accelerations,  and the longitudinal  gaps (Section 3).
Hence, TWs and cars have distinctively different longitudinal behavior.

Figure 5. Trajectories Plot

4.2 Leader-Follower Pair Identification

The influence area method by Anand et al. (16) is selected for identifying the tentative leader-follower
pairs.  Using  this  method,  a  total  of  2130  pairs  are  identified  consisting  of  (TW:1056,  Car:695,
3W:280, Bus:62, LCV:37) as subject vehicles.

Two features are essential in defining the following behavior. First, the follower can perceive the
changes in the leader’s speed/acceleration or gap when the leading vehicle is within certain limits and
responds by changing his acceleration,  speed,  and position.  Second,  the  following behavior must
continue for a sufficient time duration. 
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Accordingly, the ‘actual’ or ‘true’ leader-follower pairs are identified based on the following criteria.
The maximum longitudinal gap should be less than 30 m. No other vehicle should be present between
an identified leader and follower. There must be lateral overlap between leader and follower. The
following behavior (above three criteria) must be present for a duration greater than 5 seconds. 

Pairs  must  show the  hysteresis  behavior  i.e  oscillations  of  relative  speed  and  the  gap  from the
unconscious following behavior as defined in the Wiedemann model to capture responsiveness of the
follower to lead vehicle, sample hysteresis plots of relative speed (X-axis) and gap (Y-axis) are shown
in Figure 6. The vehicle pair on Figure 6 (a) exhibits symmetric oscillations or hysteresis around the
X-axis, in this regime, the follower tries to keep the same speed as the leader i.e. a relative speed near
to zero, but the speed may become lesser/higher than that of the lead vehicle speed as a result of the
driver’s  imperfection  in  the  estimation  of  the  lead  vehicle  speed.  So,  the  driver  will
accelerate/decelerate  slightly  again  after  reaching  another  threshold.  This  results  in  an  iterative
process  of  acceleration  and  deceleration  leading  to  hysteresis  due  to  drivers’  imperfections  to
determine the exact speeds of the leader; hence relative speed oscillates near zero, which is shown in
the hysteresis plot Figure 6(a).
 
In contrast, as shown in Figure 6 (b) non-hysteresis behavior, there are no oscillations of the relative
speed around zero in the following regime.

Figure 6 (a) Gap-Relative speed plot displaying hysteresis behavior
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Figure 6 (b) Gap-Relative speed plot displaying non-hysteresis behavior 

After  applying  the  above  conditions  to  the  2130  tentative  leader-follower  pairs,  a  total  of  1236
(TW:544,  Car:480,  3W:155,  Bus:35,  LCV:22)  pairs  are  identified  as  true  leader-follower  pairs.
Among these, very few cases with multiple leaders are identified (63 pairs out of 1024 pairs). For the
calibration  and  analysis,  subsequently,  multiple  leaders  are  considered  as  separate  leaders.  The
following response can be taken as the most conservative response of the subject vehicle to these
leaders. For all the regimes in multiple leaders' cases, a conservative braking approach is considered;
i.e., for a data point, the smallest of predicted acceleration by all leaders is considered. 

5. PROPOSED  SCHEME  FOR  CALIBRATING  W-99  PARAMETERS  USING
TRAJECTORY DATA IN MIXED TRAFFIC

This section explains the optimization-based procedure for calibrating W-99 following parameters
using  vehicle  trajectory  data  in  mixed  traffic.  Figure  7  gives  an  overview  of  the  calibration
methodology.
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Figure 7. Calibration Methodology

For the assumed initial following parameters (CC), starting time t is set to  t0 (the initial time when
following begins).

Step 1: Perpetual Threshold (as defined in Section 2.1) computations are performed at time t.

Step 2: Based on thresholds in Step 1, regimes are identified at time t.

Step 3: Based on the regimes in Step 2, the acceleration is computed for the follower at time t + τ
(where τ is reaction time) using modified equations given in Section 5.2

Step  4:  Speed  of  the  following  vehicle  is  computed  at  time  t  +  τ by  numerical  integration  of
accelerations in Step 3 using equations given in Section 5.3.

Step 5: The position of the following vehicle is determined at time t + τ by numerical integration of
acceleration in Step 3 and speed in Step 4.

Step 6: The longitudinal gap and speed difference are updated for time t + τ based on Steps 4 and 5.

Step 7: The time step is incremented.

The above process is repeated to predict all points of the given vehicle and then predicted trajectories
of all vehicles for the given set of following parameters.
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The deviation between observed and predicted acceleration, speed, and position are computed using
root  mean  squared  error  (RMSE)  for  all  ‘actual’  leader-follower  pairs.  The  CC  parameters  are
calibrated  by  optimizing  the  Wiedemann  model  with  an  objective  function  to  minimize  RMSE
between observed and predicted speeds. 

5.1 Regime Classification Procedure

The clear gap DX and relative speed (follower speed minus leader speed) DV are computed at time t,
the  driving regime of  follower  at  time  t is  determined based on the following conditions  as  per
Aghabayk et al. (1) 

Case 1: IF [ DX(t)>=SDX(t) & DV(t)<=SDV(t)] OR IF [ DV(t) <OPDV(t)] then regime at time t is 
free flow regime

Case 2: IF [ DX(t)>ABX(t) & DX(t) < SDX(t) & DV(t) > CLDV(t)] OR IF [DX(t) >=SDX(t) & 
DV(t) > SDV(t)], then the follower is in closing regime at time t. 

Case 3: IF [ DX(t)>ABX(t) & DX(t) < SDX(t) & DV(t) > OPDV(t) & DV(t)<=CLDV(t)] then regime
at time t is following

Case 4:   IF [DV(t) ≥ OPDV(t) & DX (t)≤ ABX(t) & DX(t) > AX(t)], then regime is emergency 
braking at time t

The threshold equations for the above regime classification are as follows:

AX=CC 0      (1)

ABX=CC 0+CC 1∗Vslow   (2)

SDX=ABX +CC 2   (3)

CLDV=CC5+
CC 6
17000

∗D X2
   (4)

OPDV =CC 4−
CC 6
17000

∗D X2
 

  (5)

SDV =CC5+
DX−SDX

CC 3
                                                                                 

  (6)

The driving regime at  time  t  is  identified using the above conditions and thresholds,  and for the
identified regime, the acceleration is computed for the follower at time t + τ.

5.2 Modification in Wiedemann Acceleration Equations

The difficulties with existing acceleration equations in the literature and proposed modification are as
follows:

i. Free flow regime
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The existing acceleration equation in the free-flow regime is

If (DX >ABX)

For v ≤ 22.22 m/s, Bmax ( t+ τ )=CC 8 –
(CC 8 – CC 9 )∗vn ( t )

22.22
    

(7)

Otherwise, Bmax (t+τ )=CC 9                                  (8)

If (DX <=ABX)

Bmax (t+ τ )=0    (9)

The  existing  acceleration  equation  assumes  a  constant  free-flow  speed  of  22.22m/s,  but  it  is
unrealistic to have the same free-flow speed for all vehicles and road conditions. Also, it assumes that
acceleration will  be  non-negative (CC9) for  a  speed more than 22.22m/s,  but  the  vehicle  should
decelerate at higher speeds. 

The following equation is used to reflect two modifications: 

1. instead of the fixed free-flow speed of 22.22 m/s, vehicle and road type-specific free-flow
speed from observed data is considered (using vmi, which is specific for vehicle type i)

2. the α value is set as 0.4, which ensures that  at speeds higher than the road's design speed,
acceleration should be negative to achieve the design speed.

Bmax (t+τ )=CC 8∗(1−
(α )∗vn (t )

v mi
)

(10)

where vn(t) = current speed in m/s & vmi = free-flow speed for vehicle type i in m/s

If (DX <=ABX)

Bmax (t +τ )=0   (11)

ii. Closing regime

The existing acceleration equation is

Bn ( t+ τ )=Max(−0.5
D V ( t )

2

DX ( t )−ABX ( t )
,Bmin)                     

(12)

Where, Bmin=−10+√(vn (t ))  (13)

In the existing equation, when the gap (DX) is close to ABX, then the Bn value increases sharply and
will be restricted to Bmin;  this corresponds to an artificial and ‘virtually solid wall’ at the transition
between the following and the emergency braking regime. Also, by the equation of Bmin, it can have
practically unachievable value at lower speeds.

To address these issues, the following modifications are suggested: 

1) ABX in the denominator is replaced with CC0, which allows the driver to go closer to the leader
than  the  original  formula  to  match  leader  speed.  This  also  means  that  the  safety  margin  is
reduced  with  respect  to  the  original  W99  which  is  partially  compensated  for  by  the  next
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modification.  Moreover,  we  simulated  the  modification  extensively  and  could  not  observe
accidents.

2) The first term’s denominator is limited to values greater than 0.01m to avoid zero denominators
and discontinuous accelerations. 

3) Bmin is treated as a vehicle-specific quantity for mixed traffic.

Bn ( t+ τ )=Max(−0.5
D V ( t )

2

max ( DX ( t )−CC 0,0.01 )
,Bmin

i )
(14)

Bmin
i  = Max desired deceleration of follower vehicle class i

iii. Following regime 

The existing acceleration equation is Bn ( t+ τ )=−CC 7 if the vehicle enters the following regime by

crossing CLDV or SDX (i.e., Bn(t)<=0), and  Bn ( t+ τ )=CC 7 if it enters the following regime by
crossing OPDV or ABX thresholds (i.e., Bn(t)>0).

In the existing acceleration equation, CC7 can take a value greater than Bmax
, which is physically not

possible. The modification proposed is:

If DV(t)<0

Bn ( t+ τ )=min (+CC 7 ,Bmax )                                                                                                       (15)

If DV(t) >= 0  

Bn ( t+ τ )=−CC 7  (16)

iv. Emergency braking regime 

The existing acceleration equation per (23)is:

Bn ( t+ τ )=Max(−0.5
DV (t )

2

DX (t )−CC 0
+B

(n−1 )
(t ) , Bmin) (17)

Where, Bmin=−10+√(vn (t ))  (18)

In the existing equation, when the relative speed is near 0, then there are chances of Bn to become
positive as the leader can have any acceleration value. Also, it assumes that the driver will decelerate
even if the leader is accelerating, i.e., for negative relative speed.  

Modifications 2 and 3 from the closing regime are also applicable here. Two more modifications
include: 

1. For  negative  relative  speed,  there  is  no  need  for  the  follower  vehicle  to  decelerate  (so
acceleration is set to zero). 

2. An additional term (
Bmin∗ABX (t )−DX ( t )

ABX ( t )−CC 0
¿, is added to the equation, which gives extra braking

motivation when relative speed is near 0 and acceleration computed by the existing equation
greater than zero. So, the chance of Bn to become positive when the leader is accelerating is
reduced. This term was initially given in W-74 but was removed in W-99. 

If DV < 0

Bn (t+τ  = 0                                                                                                                                          (19)
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Otherwise,

Bn ( t+ τ )=Max(−0.5
D V ( t )

2

max ( DX ( t )−CC 0,0.01 )
+B(n−1 )

(t ) , Bmin
i )                                                    

(20)

If ¿, then

Bn ( t +τ )=Max(−0.5
D V (t )

2

max ( DX (t )−CC 0,0.01 )
+B (n−1)

(t )+
Bmin∗ABX (t )−DX ( t )

ABX ( t )−CC 0
,Bmin

i )             
(21)

Bmin
i = Max desired deceleration of following vehicle class.

Once the acceleration values are estimated for the regimes, the speed and position are calculated using
numerical integration methods.

5.3 Numerical Integration Methods for Speed and Position Calculation:

For calculation of speed and position from acceleration, numerical integration equations are used.
Several  popular  methods  such  as  the  Euler  Cromer  method,  Midpoint  method,  Velocity  Verlet
method, and Beeman method have been reported in the literature to be suitable for computing speed
and positions from Newton’s equation of motion (33). The most appropriate can be problem-specific
and needs to  be evaluated on the desired dataset.  Thus,  these  numerical  integration methods are
applied to predict leaders’ speeds and positions based on observed acceleration profiles. The results
are discussed in Section 6.3.

The equations for various methods are shown below:(33)

Euler Cromer Method:

v (t +1 )=v (t )+B (t )∗dt    (22)

x (t +1 )=x (t )+v (t +1 )∗dt  (23)

Midpoint Method:     

v (t +1 )=v (t )+B (t )∗dt   (24)

x (t +1 )=x ( t )+
1
2

[ v (t )+v ( t+1 ) ]∗dt  (25)

Velocity Verlet Method:

 v (t +1 )=v ( t )+
1
2

[B ( t )+B (t +1 ) ]∗dt         (26)

x (t +1 )=x (t )+v (t )∗dt+
1
2

B ( t )∗d t2
  (27)

Beeman Method: 

v (t +1 )=v ( t )+
1
6

[2B (t+1 )+5B (t )−B (t−1 ) ]∗dt (28)
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x (t +1 )=x (t )+v (t )∗dt+
1
6

[4 B (t )−B ( t−1 ) ]∗d t 2
 (29)

where,

v(t+1) – speed at next time step              x(t+1) – position at next time step

B(t) – acceleration at current time step B(t+1) – acceleration at next time step

B(t-1) – acceleration at previous time step dt – time step.

5.4 The Goodness of Fit Function Used for Calibration

The goodness of fit function for calibration is the deviation between observed and computed speeds.
Thus,  calibration  is  formulated  as  an  optimization  problem  to  determine  the  best  set  of  model
parameter values, which minimizes this RMS error.

Min Z = RMSE (inst.speed) = ∑
i=1

N

√ 1
T ∑

t=1

T

( speeddeviation ( i , t ))
2

N

 ;  (30)

speeddeviation (i , t )=vobs ( i , t )−v pred (i , t ) 

vpred (i , t ) is obtained from numerical integration of B(i,t) as per equation 28. B(i,t) is a non-linear

function f (CC , DV , DX , V , B ),  as given in section 5.2

Thus vpred (i , t )  is f (CC 0 ,CC 1 ,CC 2 ,…… .., CC 9 ) but is non-smooth and non-differentiable due
to the presence of maxima and minima. Hence analytical optimization techniques cannot be used. The
optimization is done using the metaheuristics such as the Nelder-Mead method in R-studio software.

In this study, out of 10 W-99 parameters (CC0-CC9), Seven parameters are calibrated. CC1, CC2,
CC3, CC4, CC5, CC7, and CC8 are calibrated. CC0 is determined by measuring the gaps in a drone
image of the stopped vehicles at a signal. CC0 for TW is taken as 0.4m, and 0.66m for cars, the
default value of CC6 is adopted in this study like in Raju et al. (6) Durrani et al. (7), and CC9 is not
used in the modified equations. 

Other fixed values used in calibration include the desired speed, maximum deceleration rates (cf.
Table 2), and the reaction time (τ) is taken as 1.0 s. based on empirical analysis conducted by authors.

The optimization-based calibration process determines a set of CC parameters for a given class that
yields the minimum RMSE. This procedure is done separately for the vehicle classes TW and cars.
For  the  calibrated  values  of  cc  parameters,  RMS  errors  for  acceleration  and  position  are  also
computed based on the deviation between the observed and predicted values. 

6. Results and Discussion

6.1 Analysis Methodology

For  the  calibration  and validation  purpose, leader-follower  pairs  are  randomly divided  into  70%
(Pairs: TW=250, Car=200 with Datapoints: TW=6710, Car=5748) for the estimation and 30% holdout
data  for  the  validation. The  model  is  calibrated  using  the  estimation  dataset  and  validate  by
calculating performance measures with the calibrated model on the holdout dataset.

This study is analyzed as per the following methodology:
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i) The W-99 model  is  calibrated  by using existing acceleration equations  and proposed
acceleration equations to evaluate the effect of equations' modifications.

ii) Alternative numerical integration schemes are evaluated to find the method which gives
accurate predictions for acceleration, speed, and position over time.

iii) The proposed W-99 calibrated model is compared with other calibrated W-99 models by
evaluating the performance measures, RMSE of acceleration, instantaneous speed, and
position.

iv) Different driving behavior of TW and cars are evaluated from their CC-values and Gap-
Relative speed plot.

v) Leader-follower pairs are classified into Strict and overlapping staggered following based
on the lateral overlap, and calibration analysis is done for these pairs.

Table  3  shows  the  calibrated  CC  parameter  by  existing  acceleration  equation  and  proposed
acceleration equations, CC parameters by heuristic methods, and goodness of fit of these parameters
and for validation data set for TW and cars.
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Table 3 Calibrated CC parameters and Goodness of Fit using existing and proposed acceleration equations and heuristic methods.

Two-Wheeler Car

Parameters Existing
Acceleration
(optimizatio

n)

Proposed
acceleration
(Optimizatio

n)

Validatio
n

Heuristic 1
(w/o

Optimization)
(6)

Heuristic 2
(w/o

Optimization)
(7)

Existing n
Acceleration
(optimizatio

n)

Proposed
Acceleration
(Optimizatio

n)

Validatio
n

Heuristic 1
(w/o

Optimization)
(6)

Heuristic 2
(w/o

Optimization)
(7)

CC1 (s) 1.78 1.39 Same as
column 2

0.81 1.021 1.13 1.48 Same as
column 7

0.76 0.96

CC2 (m) 8.27 9.75 7.66 5.29 11.62 14.02 7.74 5.687

CC3 (s) -11 -9.45 -8 -5.9 -6.94 -11.4 -12.11 -6.18

CC4 (m/s) -0.84 -1.56 -1.65 2.69 -0.9 -1.95 -1.78 -2.7

CC5 (m/s) 1.14 1.31 2.04 2.692 1.11 1.61 1.99 2.7

CC7 (m/s2) 0.3 0.29 0.24 0.24 0.26 0.33 0.24 0.24

CC8 (m/s2) 3 2.78 3 3 3.15 3.15 3.15 3.15

RMSE
(Acceleratio

n) m/s2

1.17 1.08 1.01 1.4 1.67 1.21 1.08 0.97 1.26 1.47

RMSE (Inst
Speed) m/s

1.9 1.56 1.49 2.51 3.26 2.99 1.64 1.45 2.16 3.74

RMSE
(Position) m

7.96 5.25 4.96 9.09 11.63 12.3 7.79 5.6 9.58 16.85

The results of calibration by existing acceleration equations (columns 1 and 6) and by proposed acceleration equations (columns 2 and 7) are explained in 
Section 6.2 

The results of calibration by Heuristic 1 (column 4 and column 9) and Heuristic 2(column 5 and column 10) are explained in Section 6.4

Performance on the holdout set 

For the holdout data (30%), the performance measures are computed using the CC parameters obtained after calibration using the proposed equations; the
result is given in columns 3&8 in Table 3. From the results, the calibrated model parameters also perform well on the validation dataset.
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6.2 Use of Modified Acceleration Equations

Position, speed, and acceleration profiles predicted by existing acceleration equations and the 
proposed acceleration equation are plotted along with observed profiles for a sample follower in the 
following Figure 8.

Figure 8. Trajectory Profiles with modified and existing acceleration equations

From Figure 8,  the model  with proposed acceleration equations predicts the observed trajectories
better than the model with existing acceleration equations. This is also observed in Table 3, where
RMSE of  the  proposed  acceleration  equations  are  lower  for  speed  (RMSE (m/s):  1.56  vs.  1.9),
position (RMSE (m):  5.25 vs.  7.96),  and acceleration (RMSE (m/s2):  1.08 vs.  1.17) than for  the
existing equations for two-wheelers. Similar trends are observed for cars as well. 

6.3 Evaluation of Numerical Integration Methods for Trajectory Computation

Numerical integration methods from section 5.3 are evaluated based on deviation speed and position
profiles relative to the observed trajectories. Figure 9 (a) and (b) shows the plot of absolute deviation
of speed and absolute deviation of position by the different methods with observed speed and position
of  a  sample leader  respectively.  The goodness  of  fit  is  measured by the root  mean square  error
(RMSE) of predictions.

Figure 9 (a). Absolute speed deviation for different numerical integration methods 
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Figure 9 (b). Absolute position deviation for different numerical integration methods

The average RMSE between observed values and calculated values of speed & position are computed
for all different methods across all different leaders.

RMSE of speed for Midpoint Method: 1.438 m/s, Euler Cromer Method: 1.438 m/s, Velocity Verlet
Method: 0.606 m/s, and for Beeman Method: 0.282 m/s.

RMSE of position for Midpoint Method: 12.701 m, Euler Cromer Method: 12.701 m, Velocity Verlet
Method: 5.345 m, and for Beeman Method: 1.692 m.

The RMSE is smallest for Beeman’s method for both speed and position computations and hence this
method is used subsequently. 

6.4 Comparison with other W-99 Models

W-99 parameters are calibrated for the given dataset using procedures provided by Raju et al. (6) and
Durrani et al.  (7), denoted as the heuristic method 1 and 2, respectively.  The heuristic 1 method is
chosen because they have used the same data as in this paper to calibrate the W-99 model; heuristic 2
is considered as they have considered heterogeneity across the vehicle types and pairs.  As noted
earlier,  these heuristic methods calculate W-99 parameters without minimizing the deviation from
observed field data. 

For comparison,  the proposed parameters and fit  functions  were compared with other  calibration
results in the literature for multi-lane mixed traffic conditions based on macroscopic performance
measures. 

Following Fig.10 shows the deviation of the sample predicted trajectory of the follower (TW) by
different W-99 models with observed trajectory.
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Figure 10. Predicted Trajectory Deviation

The results of performance measures by the proposed model, heuristic models, and other calibration
results in the literature are plotted in Figure 11.

Following plot 11 (a), (b), (c) shows the RMSE of acceleration, speed, and position respectively for
different calibrated W-99 Models for TW as a class of follower.

Figure 11 (a) RMSE Acceleration for different W-99 Models
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Figure 11 (b) RMSE Speed for different W-99 Models

Figure 11 (c) RMSE Position for different W-99 Models

From the above RMSE results, it can be seen that the performance measures by the proposed method
offer a significant improvement in predicting acceleration, speed, and positions at the microscopic
level.  

 6.5 Difference in Vehicle-Following Parameters and Thresholds between TW and Car
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Figure 12 shows the gap-relative speed plots with thresholds of regime identification, calculated for
the CC parameters by the proposed method is given in Table 3, for a constant leader speed of 10 m/s. 

Figure 12 Wiedemann Threshold Plots for TW and Car

From the calibrated W-99 parameters for TW and cars in Table 3 (columns 2 and 7) and threshold
plots  of  the  same  parameters  in  Figure12,  we  can  see  that  the  threshold  diagram  and  the  CC
parameters are quantitatively different for these two vehicle classes. 

CC1 of cars is larger than that for TW, which is evident as car drivers keep more gap to the leader
than TW. Hence, ABX for TW will be lower than that for cars. Consequently, a lower percentage of
TW points will be in the emergency braking regime than is the case for cars.

CC2 decides the range of the following regime; the value difference shows that cars have a longer
following regime than TW, as SDX will be higher. Hence, car drivers can sense the change in leader
behavior at a longer gap than TW drivers. Consequently, the chance of TW drivers being in the free-
flow regime is higher compared to that of car drivers. 

CC3 for TW is lower in magnitude than that for cars, which we can see as the slope of the SDV line in
the threshold plot; hence TW drivers perceive a slow-moving leader and decelerate earlier than car
drivers. 

CC4 & CC5 gives the OPDV & CLDV thresholds;  for TWs, both CC4 and CC5 are smaller  in
magnitude than that for cars; hence TW is more sensitive to change in leader’s speed.
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CC7 is acceleration in the following regime; car drivers apply higher acceleration values than TW
drivers while following the leader unconsciously.  

The most important observation is that, under the same relative speed and gap stimulus, two-wheelers,
and cars may be in different  regimes and display different  acceleration responses.  Thus, accurate
calibration of each vehicle's parameters is essential for developing micro-simulation models for mixed
traffic.

6.6 Analysis of Following Behavior between Strict and Overlapping-Staggered Following

A follower is considered to belong to the strict following regime if its overlapping width is more than
0.25m for TW and more than 0.75m for cars (i.e., 50% of the average width) for at least half of the
observed time interval or  if the smaller of the pair  has a full  overlap. Otherwise,  the follower is
considered to be in the overlapping-staggered following regime, these criteria are based on empirical
analysis conducted by authors. 276 two-wheelers and 328 cars were in the strict following regime,
whereas 268 two-wheelers and 152 cars were classified into the staggered following regime. The
calibration analysis is done for strict and overlapping-staggered. The calibrated parameters and the
Goodness of fit [RMSE (acceleration) m/s2, RMSE (speed) m/s, RMSE (position) m] for the above
four sets of CC’s are given in Table 4.  

Table 4 Calibrated CC parameters and Goodness of Fit for Strict and Overlapping Staggered
following

Parameter

TW Car

Strict
Following

Overlapping
Staggered
Following

Strict
Following

Overlapping
Staggered
Following

Pairs 276 268 328 152

CC1 1.32 1.13 1.48 1.13
CC2 10.1 11.97 11.02 13
CC3 -9.09 -10.02 -10.4 -10.67
CC4 -1.84 -1.64 -1.8 -1.7
CC5 1.38 1.31 1.56 1.47
CC7 0.29 0.29 0.26 0.35
CC8 2.33 2.57 2.91 3.11

RMSE Acceleration 
(m/s2) 0.97 1.1 0.94 1.11

RMSE Speed (m/s) 1.46 1.6 1.41 1.65

RMSE Position (m) 4.88 5.26 5.17 7.52
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Figure 13 (a) Wiedemann Threshold Plots - Strict following for TW and cars

Figure 13 (b) Wiedemann Threshold Plots - Overlapping-Staggered following for TW and cars

Figure 13 (a) and (b) shows the gap-relative speed plots with thresholds of regime identification for
the CC parameters of Strict and Overlap-Staggered following for TW and car as given in Table 4
respectively, for a constant leader speed of 10 m/s. 

The calibration results  indicate that  the driving behavior in a staggered car-following situation is
different from that of strict car-following. This is particularly true for the safety indicator time to
collision, i.e., the ratio of gap (DX) and relative speed (DV) (34)  Therefore, different parameter sets
are to be calibrated for strict and staggered following.

The CC1 values for strict and staggered following imply that drivers keep a smaller gap in staggered
following  compared  to  the  strict  following.  The  found  CC4  and  CC5  values  imply  that,  in  the
staggered following, drivers are more sensitive to changes in leader’s speed than the strict following.
There are also differences with respect to the vehicle classes: TW drivers are found to keep lower
gaps and to be more sensitive to speed changes of a leader than car drivers.

7. CONCLUSION 

This paper proposes and implements a calibration procedure for the Wiedemann-99 model based on
RMSE between simulated and observed trajectories  of  mixed traffic  consisting predominantly of
motorized  two-wheelers  and  cars.  The  proposed  modifications  of  the  Wiedemann  acceleration
equations  allowed for  a  more realistic  representation of  driving  behavior  under  these conditions.
Alternative numerical integration schemes for computing speed and position over time are evaluated.
The performance of the proposed calibration method is compared with other heuristic trajectory-based
calibration methods. The calibrated parameters may help understand the dynamics of mixed traffic
flow.  Particularly,  we  found  differences  in  the  car-following  behavior  between  motorized  two-
wheelers and cars as well as between strict and overlapping staggered following. 

The following key findings and observations emerge from this study. The simulation-based analysis
demonstrates  that  different  microscopic  W-99  parameters  can  lead  to  similar  macroscopic
performance measures. Thus, the psychophysical (Wiedemann model) calibration using macroscopic
and  aggregate  performance  measures  may  not  uniquely  determine  microscopic  behavior  or
performance. 
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Existing  acceleration  equations  reported  in  the  context  of  W-99  models  can  lead  to  some
inconsistency and unrealistic driving behavior characteristics. These include the inability to capture
vehicle type-specific features and a wrong sign for acceleration in some cases.  Modifications are
proposed to these equations to be consistent with observed driving behavior. 

The microscopic performance of the above model in computing trajectories depends on the calibration
parameters and is also quite sensitive to the numerical integration technique. Five different methods
were evaluated, and it was observed that Beeman’s integration scheme provides the best fit with the
observed data.    

An optimization-based scheme is used to calibrate the W-99 model for mixed traffic with the above
modifications.  The proposed calibration scheme is  found to outperform other calibration methods
based on trajectory data (but without optimization) in terms of RMS errors for speed, position, and
acceleration. The calibrated parameter values for thresholds and boundaries for regimes turned out to
be behaviourally more realistic than those produced with other methods. Visual comparison of the
regimes across models confirms these differences. 

Not only do the parameters and the regime boundaries vary across calibration methods, but they also
differ between two-wheelers and cars in mixed traffic. These differences are quantified and illustrated
using  sample  plots  of  relative  speed  and  gap  across  vehicle  classes.  The  results  reveal  that  the
calibrated  parameter  values  and,  consequently,  the  thresholds  that  delineate  closing,  following,
emergency braking, and opening regimes vary between two-wheelers and cars. The window (in the
relative speed vs. gap plot) for the unconscious following is larger for cars, while the free flow regime
is more extensive for two-wheelers. Under the same relative speed and gap stimulus, two-wheelers
and cars may be in different regimes and display different acceleration responses.

The study's findings have direct and vital applications for the calibration and development of mixed
traffic micro-simulation models. This study is based on calibration from a mid-block section in a
divided six-lane arterial in Chennai. Extending this study to other locations and considering extended
car-following  behavior  such  as  vehicle  platooning  case is  a  direction  for  continuing  research.
Extending  the  analysis  to  consider  other  facility  types  (four-lane  divided  urban  roads,  two-lane
divided and undivided roads) as well as intersections by choosing suitable performance measures is an
exciting and challenging direction for future work. 

This work can be extended to other simulation platforms, including Sumo, Aimsun, Simtraffic, etc.
since all models belong to the same class of car-following models (local time-continuous models or
iterated maps with speed, relative speed, gap, and sometimes acceleration as exogenous variables).
More  systematic  studies  that  relax  the  conditions  to  identify  leader-follower  pairs  (in  terms  of
duration  of  the  following  or  extent  of  lateral  overlap)  allowing  to  analyse  more  diverse  leader-
follower pairs are being investigated currently by the authors and will be reported in future studies.
Furthermore, the analysis can be extended to model, not just the leader but the whole local traffic
environment  as  explicit  input  allowing for  many other  maneuvers  beyond this  particular  study’s
scope. 
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 Figure Legends:

1. Figure 1 Schematic representation of Wiedemann Model (22)

2. Figure 2. Wiedemann thresholds plots for different sets of CC parameters

3. Figure 3. Trajectory Plots of Simulated Data for different sets of CC parameters

4. Figure 4. Snapshot of study section (31)

5. Figure 5. Trajectories Plot

6. Figure 6 (a). Gap-Relative speed plot displaying hysteresis Behaviour

7. Figure 6 (b). Gap-Relative speed plot displaying non-hysteresis Behaviour

8. Figure 7. Calibration Methodology

9. Figure 8. Trajectory Profiles with modified and existing acceleration equations

10. Figure 9 (a). Absolute speed deviation for different numerical integration methods 

11. Figure 9 (b). Absolute position deviation for different numerical integration methods

12. Figure 10. Predicted Trajectory Deviation

13. Figure 11 (a). RMSE Acceleration for different W-99 Models

14. Figure 11 (b). RMSE Speed for different W-99 Models

15. Figure 11 (c). RMSE Position for different W-99 Models

16. Figure 12 Wiedemann Threshold Plots for TW and Car
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17. Figure 13(a). Wiedemann Threshold Plots Strict following for TW and cars

18. Figure 13(b). Wiedemann Threshold Plots Overlapping-Staggered following for TW and cars
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