
Solutions to the

Examination for the Masters Course
Methods of Econometrics, winter semester 2019/20

Problem 1 (30 points)

(a) In this context, Leontief’s Input-output model (IOM) describes the product and service
streams between the car manufacturers, their suppliers, the remaining sectors of this na-
tional economy, and the consumers. Specifically, x1 denotes the value of produced vehicles,
x2 the value of the parts needed by the car producers, x3 the monetary value of all the
other products and services, and yi what is delivered from sector i to the end consumers.
The assumptions are

(i) linearity (double input leads to double output),

(ii) stationarity (no buildup or depletion of storages).

The coefficients Aij of the IO-matrix A denote the amount of material and services from
sector i (in e) to produce one eworth of product j. Specifically, A21 = 0.7 indicates that
70% of the value of a new car are delivered to the car manufacturers by their suppliers,
which is plausible.

(b) The second line of the IOM equation x = y + A x reads

x2 = y2 +A21x1 +A22x2 +A23x3 = A21x1 +A22x2 +A23x3

(since no car parts are delivered to the end consumers, y2 = 0). Hence

A23 =
x2 −A21x1 −A22x2

x3
= 0.005.

(c)

y = x− A x = (1 − A )x =







0.95 −0.10 −0.01
−0.70 0.9375 −0.005
−0.10 −0.40 0.70













1
0.8
10






=







0.77
0

6.58






.

(d) The production vector as a function of the demand vector is given by an inversion of 1 −A :

x = (1 − A )−1 y ≡ B y.

Because of linearity, this also applies to the changes. With a demand change of ∆y =
(0.1y1, 0, 0)

T = (0.077, 0, 0)T , we have

∆x = B∆y =







1.15 0.13 0.0174
0.862 1.17 0.0207
0.657 0.686 1.44













−0.077
0
0






=







−0.0886
−0.0664
−0.0506






.

The new outputs in the three sectors are

x new = x+∆x =







0.911
0.734
9.95







and the relative changes

∆x1

x1
= −8.86%,

∆x2

x2
= −8.30%,

∆x3

x3
= −0.51%,

So, a drop in the demand for vehicles also affects the supplyers and, to a lesser extent, all
the other sectors: Everything in a national economy is coupled!

Watch out for the following common errors!

(d) Read carefully: A 10% drop from 0.77 means −0.077, not −0.1
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Problem 2 (45 points)

Binary-choice situation for accepting or rejecting gaps when crossing a street at an
unsignalized point:

Gap index n 1 2 3 4 5 6 7 8 9 10 11 12
Time gap T [s] 7 5 9 5 4 1 5 4 5 2 6 8
speed v [km/h] 50 15 30 40 15 50 60 20 30 40 60 45
Vehicle type truck bike car car bike car car bike car car car car
Gap accepted (i = 1) 1 3 3 1 1 0 0 1 1 0 1 2
Gap rejected (i = 2) 2 0 1 2 1 1 2 2 1 2 2 0

(a) None of the exogenous variables influencing the decision (time gap, speed, vehi-
cle type) is a characteristic of the alternatives: If a truck is approaching, this is
so regardless whether the gap is accepted or not. All three influencing variables
can be considered as external variables (like the weather in the exercise examples)
and therefore need to me modelled in an alternative-specific way with a reference
alternative.

In particular, we can set V2 = 0 if we assume alternative i = 2 (waiting) to be the
reference for all the alternative-specific factors and also for the AC.

Comment: Generally, we can always set the determinsitic utility of one alternative
equal to zero since only utility differences matter (translation invariance). However,
if we have characteristics assuming nonzero values for all alternatives (which we do
not have here), this will be a counterintuitive formulation, in most cases.

(b) – β2 denotes the increase of the preference for walking instead of waiting per
additional second of the time gap. Since longer gaps are good, β2 > 0 expected.

– β3 denotes the increase of the utility for accepting the gap (crossing right now)
per additional km/h of the approaching vehicle. Since higher speeds are bad
for the pedestrians (even if the gap is measured in seconds rather than meters),
β3 < 0 is expected.

– β4: Increase in utility for crossing right now if a bicycle instead of a car is
approaching. Since a bike is less dangerous/intimitading than a car, β4 should
be positive.

– β5: The same for approaching trucks. Obviously, β5 < 0.

Comment: β1 denotes the preference for walking instead of waiting if the gap is zero
and a car is approaching at zero speed: Since this is beyond the applicability limits,
nothing can be said about the expected sign (not required in the examination).

(c) In order to calculate the model property sum for β = 0, we observe that always
Pni = 1/2 and the total number of taken decisions is N = 30.

– Property sum X1 for the AC: Total number of accepted gaps

X data
1 =

∑

n

∑

i

δi1yni =
∑

n

yn1 = 14, X̂1(β = 0) = N/2 = 15

– Property sum X4: Number of accepted gaps if a bicycle is approaching. The
total number of decisions with an approaching bike is N bike = 8:

X data
4 =

∑

n

yn1

{

1 bike approaching
0 otherwise

= 5, X̂1(β = 0) =
N bike

2
= 4.
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– Property sum X5: Number of accepted gaps if a truck is approaching (N truck =
3):

X data
5 =

∑

n

yn1

{

1 truck approaching
0 otherwise

= 1, X̂1(β = 0) =
N truck

2
= 1.5.

β = 0 is not a ML calibration of the Logit model since the realized and modelled
property sums are different from each other.

(d) For the first gap n = 1, we have

x2 = T = 7 s, x3 = v = 50 km/h, x4 = 0, x5 = 1 (a truck is approaching),

so
V1 = β̂1 + 7β2 + 50β3 + β5 = −0.693

and

P1 =
eV1

eV1 + 1
= 0.333

This coincides with the observed percentaged frequencies of 1/3 but this is by chance.

(e) A factor is “relevant” if its associated model parameter is significantly different from
zero, hence we have to test the null hypotheses β2 = 0 and β3 = 0, respectively.

1. H0 : β2 = 0,

2. Test statistics T = (β̂2 − 0)/
√

V̂ (β̂2) ∼ N(0, 1) if H0,

3. Data value: t data = 0.747/0.369 = 2.02 (notice that the standard deviations,
not the variances, are given!),

4. Decision: H0 rejected if |t data| > z0.975 = 1.96: Yes

For H0 : β3 = 0, we obtain similarly

t data = −0.0369/0.0508 = −0.727, |t data| < z0.975 = 1.96 ⇒ not rejected

Comment 1: The p-values p = 2(1 − Φ(|z data|) (not required) are p2 = 4.3% and
p3 = 46.8%, respectively.

Comment 2: For tests of discrete-choice model aprameters, we always assume the
asymptotic expansion which requires a minimum number N of decisions. Here,
N = 30 is just sufficient.

(f) Since β̂4 denotes the utility difference between approaching bikes and cars and β̂5

that between trucks and cars, β̂4 − β̂5 denotes the difference between bicycles and
trucks.

Test of β4 − β5 = 0:

– H0 : γ = β4 − β5 = 0

– Test statistics: T = γ̂/
√

V (γ̂) ∼ N(0, 1) where the error variance is given by

V (γ̂) = V (β̂4 − β̂5) = V (β̂4) + V (β̂5)− 2 Cov(β̂4, β̂5) = 0.63

– Data value (notice the squares at 1.09 and 1.46 since these numbers denote the
standard deviations!):

t data =
1.04− (−0.88)√

1.092 + 1.462 + 2 ∗ 0.355
= 0.78

Decision: |t data| < z0.975 = 1.96 ⇒ H0 cannot be rejected.
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Comment: Notice that the p-value of 0.43 is of the same order as that for β4 and β5

separately. It would have been smaller if there was no correlation/covariance.

(g) There are too few data points for a five-parameter model: We have just 12 situations
with 30 decisions.

Watch out for the following common errors!

(a) Vi does not mean that a utilility of an alternative is zero since the utility is not
defined: Only the utility difference is a useful concept! So, V = 0 can serve as a
reference: If another alternative is better, it has a positive utility.

(b) Don’t copy past problems, tutorials, or solutions to old exams! In contrast to all
these, the time sensitivity here is expected to be positive since T is here the time
gap, where more is better, and not the travel time where less is better!

(c) Don’s solve extra problems such as calculating property sums for the factors of β0,
β3, and β4. This only costs time and brings no extra points.

(e) In the maximum-likelihood estimation, we always use the asymptotic expansion
where parameter estimation errors are Gaussian, i.e., the test statistic is standard-
normal instead of student-t distributed. The exact distribution for small samples is
much more complicated than a simple Student-t distribution.

(e) as well: If a parameter is “significant”, this always means that the hypothesis that
it is equal to zero can be rejected (if nothing else is stated, at α = 5%). So no ≥ or
≤ null hypotheses to check if a parameter is significant!

Problem 3 (45 points)

Analysis of data from bike computers:

Person/section 1 2 3 4 5 6 7 8 9 10
Speed[m/s] 8 9 2.8 11.5 6 4.5 2.5 6 12.5 11

Acceleration[m/s2] 0 0 0 0.2 0.4 0 −0.3 0 0 0
Gradient [%] 0 0 5 −3 0 2 6 0 −3 0
Mass[kg] 78 78 78 69 69 69 92 92 92 92
Power [W] 134 166 135 212 240 100 89 87 35 280

(a) The wind drag depends on the wind speed, only, while all other contributions (rolling
resistance, gradient, acceleration) are proportional to the mass m. Hence, a pure
analysis of the influencing variables leaves only β1v

3
i to describe the contribution of

the wind drag.

Remark: Of course, you may know that the wind drag increases drastically with the
speed also leading you to the β1v

3
i term (power is force times speed, and the force

due to the wind drag increases quadratically with the relative wind speed). This
explanation will also give full marks.

(b) We have n = 10 data points and J + 1 = 5 parameters:

– y is a n = 10 column vector (10× 1 matrix)

– X is a n× (J + 1) = 10× 5 matrix

– β is a J + 1 = 5 column vector (5× 1 matrix)

– ǫ is a n = 10 column vector

– Cov( ǫ) is a 10× 10 matrix (with identical diagonal elements and zeroes, oth-
erwise).
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(c) The first line (row) of X relating to the first person/section is given by

(X )1 = (1, v31, m1v1, m1α1v1, m1a1v1) = (1, 512, 624, 0, 0)

Remark: Notice the first entry 1 relating to the constant β0 (first element of the first
column (1, 1, ..., 1)T of X )

(d) – For a standing cyclist, we have y = β0 = 0. Hence, β0 = 0 (and also ǫ1 = 0
contradicting the i.i.d. N(0, σ2) assumption for ǫi).

– Uphill power:

P up
i = migαivi

!
= β3miαivi ⇒ β3 = g = 9.81m/s2

– Power to overcome the inertia when accelerating:

P acc
i = miaivi

!
= β4miaivi ⇒ β4 = 1

(e) Expected power (in W) for the first person/section (you might reuse the results from
(c), here):

ŷ1 = β̂0 + 83β̂1 + 78 ∗ 8β̂2 = β̂0 + 512β̂1 + 624β̂2 = 132.4 [W ].

If this person drives at v = 10m/s instead of 8m/s:

ŷ1(v = 10m/s) = β̂0 + 103β̂1 + 78 ∗ 10β̂2 = β̂0 + 1000β̂1 + 780β̂2 = 212.4 [W ].

Remark: This demonstrates how a rather small increase in speed leads to much more
needed power ;-)

(f) Standard deviations:
√

V̂ (β̂1) =
√
5.7 ∗ 10−5 = 0.00752,

√

V̂ (β̂2) =
√
0.00016 = 0.01275.

Tests:

– H0 : β1 = 0

T =
β̂1

√

V̂ (β̂1)
∼ T (10− 5)|H0 = T (5)|H0, t data = 0.136/0.00752 = 18.07

Decision: |t data| > t
(5)
0.975 = 2.571 ⇒ H0 rejected, i.e., β1 is significantly

different from zero and the associated factor v3 (air drag) is significant.

– H0 : β2 = 0

T =
β̂2

√

V̂ (β̂2)
∼ t(5)|H0, t data = 0.0876/0.01275 = 6.877 ⇒ H0 rejected

– H0 : β0 = 0

T =
β̂0

√

V̂ (β̂0)
∼ t(5)|H0, t data = 8.14/4.636 = 1.756 ⇒ H0 not rejected

– H0 : β3 = g = 9.81m/s2

T =
β̂3 − 9.81
√

V̂ (β̂3)
∼ t(5)|H0, t data = −0.144 ⇒ H0 not rejected
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– H0 : β4 = 1

T =
β̂4 − 1
√

V̂ (β̂4)
∼ t(5)|H0, t data = 1.01 ⇒ H0 not rejected

Remark 1 (not required): As expected, the null hypotheses β0 = 0 (no power at
no speed), β3 = g (physics: Power to overcome uphill=force*speed= mgαv), and
β4 = 1 (physics, Newton’s law: Power to overcome intertia=force*speed = mav)
cannot be rejected.

Remark 2 (not required): You might have heard that the wind drag is propor-
tional to v2, not v3. This is true. However, the power to overcome the wind drag
is=force*speed resulting in another factor of v.

Remark 3 (not required): The nontrivial coefficients β̂1 and β̂2 allow for a reverse
engineering of the air-drag and friction coefficients that have been assumed by the
app makers. The friction coefficient will be treated in (g), and the air-drag coefficient
here:

Equating the wind-drag force Fw = 1/2cdρLAv
2 (where cd is the dimensionless air-

drag coefficient, ρL = 1.2 kg/m3 is the density of air, and A the front area of the

cyclist) with β̂1v
2 gives a cdA value of

cdA =
β̂1

2ρL
= 0.227m2.

Assuming a front area A = 0.5m2, this corresponds to a cd value of about 0.45 (for
comparison, a modern car has a cd value of about 0.3).

(g) Equating the physical rolling resistance force FR = µmg with β̂2m gives for the
assumed value of the friction coefficient the value

µ =
β̂2

g
≈ 0.009

(Probably, the app makers have assumed µ = 0.01 which is within estimation errors).

(h) Comparing two nested models (in the sense that one model is a restrained special
case of another “full” model) is performed by the F -test (quite in analogy to the LR
test for discrete-choice models, only the test statistic is different, there):

– H0: The reduced model describes the observation equally well as the full model.

– The test statistic is Fisher-F distributed provided H0 is true. The two param-
eters of the Fisher-F distribution are

∗ the numerator degrees of freedom df=3 (the full model has 5 parameters
and the restrained one 2),

∗ the denominator df=5 (n = 10 data points minus 5 parameters of the full
model)

– The rejection region is above a critical value, namely the (1− α) quantile.

– Since physics requires the five-parameter model to be reduced to the two-
parameter model, the expected outcome is that H0 is not rejected.

Remark 1: Instead of the F -test, you could also argue with overall model quality
metrics for model selection such as R̄2 (adjusted R2), AIC, or BIC. This gives full
marks if it is stated that the selected model is the one with higher R̄2, or lower AIC
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or BIC (incidentally, all these criteria would erroneously select the full model, so the
F -test which is more in favour of Occam’s Razor, as shown below, is to be preferred)

Remark 2: (not required) The reduced model takes into account all physical laws
while it does not ignore any nontrivial factors of the original model. As expected,
the null hypothesis (“the reduced model describes the observation equally well as
the full model”) cannot be rejected: the data value f data = 2.19 while the rejection

region for an α-error of 0.05 is given by f > f
(3,5)
0.95 = 5.41.

Watch out for the following common errors!

(c) The system matrix elements xij include all prefactors of the parameters according
to yi =

∑

j xijβj + ǫi So, for the first line (first cyclist/segment), the prefactor of
β0 = 1 (as for all segments), that of β1 is v31 = 83 and so on.

(d) Look at the problem statement: The expected parameter values, not only signs
should be given.

(h) As the name implies, the LR (Likelihood-ratio) test refers to the maximum-likelihood
calibration. With OLS estimation as we have used for regression, the equivalent
method is the F-test, so this would be the right answer.
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