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11.1 Macroscopic Models for Unidirectional Flow

I Basic difference to (lane-based) vehicular
traffic: full two-dimensionality

I Can also be applied to disordered traffic of
other self-driven agents such as
non-lanebased traffic flow, cycling,
Marathon runs, inline-skating, and
crosscountry-ski events

I In contrast to microscopic pedestrian models
such as the Social-Force Model,
macroscopic pedestrian models are only
suited for essentially unidirectional
pedestrian flows

I Because of the two dimensions, we need to
redefine density and introduce a new
macroscopic quantity: flow density
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11.1.1 Elementary Macroscopic Variables of Twodimensional Flow

I 2d density: ρ(x, y, t) = ρ(x, t) [pedestrians/m2 or peds/m2],
I Local velocity: V (x, t) = (V, Vy) [m/s].
I Flow density: J(x, t) = (J, Jy) = ρV [peds/(ms)]
I Effective 1d density [peds/m]:

ρ1d(x, t) =

∫ W/2

y=−W/2
ρ(x, y) dy ≈ ρW

I Flow [peds/s]

Q =

∫ W/2

y=−W/2
J(x, y) dy ≈ ρVW ≈ ρ1dV
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Hydrodynamic relation and continuity equation

I hydrodynamic relations (vectorial and effective):

J = ρV , J = ρV, Q = ρ1dV = ρWV

I Vectorial continuity equation:

∂ρ

∂t
+
∂Jx
∂x

+
∂Jy
∂y

= 0

I Effective continuity equation:
∂ρ1d

∂t
+
∂Q

∂x
= 0

important:

I In the effective continuity equation, lateral motion is introduced implictly: For
example, in a stationary situation, ∂

∂t = 0, we have Q = ρWV = const.. If W (x)
narrows funnel-like, the 2d-density ρ increases by concentric lateral motion
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11.1.2 Fundamental Diagramm

Parabolic FD a la Greenshields:

Ve(ρ) = V0

(
1− ρ

ρmax

)
,

Je(ρ) = V0ρ

(
1− ρ

ρmax

)
Weidmann FD:

ve(ρ) = v0

{
1− exp

[
−λ
(

1

ρ
− 1

ρmax

)]}
Je(ρ) = ρVe(ρ)
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Wave velocities

I Wave velocity w(ρ) = J ′(ρ)

I Notice: derivative with respect to 2d density. Double density means
1/
√

2 times the average distance but more interacting people
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11.1.3 Application I: Loveparade in Duisburg

Example for macroscopic event and evacuation
planning:

I Assume unidirectional flow and a capacity
density of Jmax = 1 ped/s/m (a little bit
lower than that of the Weidmann FD)

I Identify the bottleneck: The ramp to the
event site at a width W = 30 m (the two
tunnels have a summed cross section of
W = 40 m)

I Calculate the bottleneck strength assuming
no further obstacles:

C = WJmax = 30 ped/m = 108 000 ped/h

I Best case for three hours approach time
(continuous unidirectional flow, no
obstacles):

n = 324 000 persons
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Application II: Mixed traffic
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Application III: planning Marathon sports events

Planning of a starting scheme

I Define several starting groups i with a
maximum number ni of athletes, each,
ordered to expected performance (best
are first)

I Define a time delay τ between the
starting shots of every group (“wave
start”; the individual athlete’s time
starts when passing an electronic RFID
gate)

I Identify the bottlenecks (often near the
start) and estimate the flow profile
from the expected speeds, their
dispersion, and the start time delays

I Check if the maximum flow is below
the bottleneck capacity; otherwise,
change ni and τ
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Application IV: Large-scale pedestrian streams in Mekka
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Application IV: Large-scale pedestrian streams in Mekka
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11.2 Microscopic Model I: Social-Force Model

I In contrast to macroscopic models, microscopic pedestrian models are suited to
model any pedestrian motion, whether directed or not:

I Any pedestrian can have its individual destination

I The models of this class are fully twodimensional; all pedestrians can move anywhere
inside allowed regions

I The first and most prominent representative is the Social Force Model (SFM)

I More generally, the SFM is a model for self-driven particles or active particles,
sometimes also called agents (no stirring or shaking involved)

I In analogy to Newtonian forces, the SFM pedestrian is driven by social forces

I In extended models, additional physical forces are modelled in case of a direct
contact. However, this makes the equations hard to solve because it entails stiff
differential equations (involving several time scales)
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Overall specification of the Social-Force Model

Pedestrians are active particles of mass 1, i.e., force equals acceleration:

v̇i ≡
dvi
dt

= f free
i +

∑
j 6=i

f int
ij +

∑
k

fwalls
ik .

I The free force f free
i directs the pedestrians to their respective destinations. It can be

modelled by a gradient of a free potential, e.g., indicating the shortest distance to
the destination

I The pedestrian-pedestrian interaction forces f int
ij acting from pedestrian j onto i

are generally repulsive to avoid collisions and depends on the distance, directions, and
the velocity vectors of both pedestrians

I The wall forces keep the pedestrians on the walkable area, i.e., away from the
boundaries or from fixed compact obstacles. Both can be modelled as an obstacle
floor field

I The floor fields and free potentials are static scalar fields Φ(x, y) defined on the
walkable area. They can be pre-calculated for all boundaries, obstacles, and possible
destinations
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11.2.1 Free potential and force

I Free force corresponds to a
vectorial free-traffic OVM

f free
i =

v0i − vi
τ

I The desired velocity
v0i = v0∇Φfree is given by the
gradient ∇ = (∂x, ∂y) of the
free potential

I The free potential Φfree(x, y)
gives the distance to the
destination on the shortest
possible path

I Model parameters: speed
adaptation time τ and desired
speed (magnitude of v0i) Give
plausible values for τ and v0
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Changing the pedestrian’s preferences

I If the preference is to avoid “pancake” like crowding to leave doors etc, change the
floor field to no longer reflect directly the shortest distance

I Here pedestrians prefer a queue rather than a “pancake”

I Rather than the gradient, just take v0 times the unit vector of the gradient (Why was
the gradient always a unit vector, in the last slide?)
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11.2.2 Pedestrian-pedestrian interactions

Assumptions:

I The forces should be repulsive. (“Mexican-hat” potentials modelling attractive forces
for couples, families, or friends will not be considered but can be added easily.)

I Generally, the forces should depend on the velocity vectors (speeds and directions) of
both pedestrians. This also includes simple anticipation heuristics over anticipation
time τa

I Unlike physical forces, there is no momentum conservation (actio=reactio). Instead,
forces from objects in viewing direction are stronger than that the nearly vanishing
ones on the back. This anisotropy is the basis for fundamental diagrams

? Compare with car-following models
? What would a fundamental diagram look like for interaction forces satisfying

actio=reactio?

⇒ general structure for a force from pedestrian/vehicle/compact obstacle j onto
pedestrian i:

f ij = f ij(xi,xj ,vi,vj ; τa)
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Further simplifying assumptions for the interactions
The general structure implies two functions fx(.) and fy(.) with eight dynamic arguments
(the components of the two position and velocity vectors), each.
Rather complicated ⇒ Simplify further

I Translational invariance: Dependence on the distance vector dij = xi − xj , only,
and not separately on xi and xj in difference vectors, the subject always comes first!

I Without the viewing angle dependency, the forces can be written as a gradient of an
interaction potential, fpot =∇dΦint(d,vi − vj)

I The potential/potential force is either Galilei invariant, i.e., depends on the relative
velocity vector vi − vj , only (Elliptical specification II), or the velocity of the
interacting pedestrian/object j is ignored (Elliptical specification I), or there is
neither velocity dependence nor anticipation (Circular specification).
(in any case, the free part and the obstacles break this invariance on the system level)

I The viewing angle dependency is just a multiplicative prefactor w(cosφ) of the
cosine of the viewing angle, cosφ = −d.vi/(|d| |vi|)

⇒ Force expression reduced to a scalar potential of only four dynamical variables:

f ij = w(cosφ)fpot
ij (d,vi − vj) = −w(cosφ)∇dΦint(d,vi − vj)
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I Present distance vector dij = xi − xj

I Anticipated distance change:
I Elliptical specification II: ∆dij = τa(vi − vj)
I Elliptical specification I: ∆dij = τavi
I Circular specification (no anticipation):

∆dij = 0

I Anticipated distance vector: d′ij = dij + ∆dij

? Check, in which specification
pedestrian i will pass
pedestrian j to the left or right
to avoid a collision

Anticipation
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Constructing the interaction potential for the elliptical specifications

I Determine the present collision point
F1 = xj for i and the present
location F2 = xj −∆d for an
anticipated collision after τa

I Define ellipses by the focal points F1
and F2 and the present distance
vector d

I Equipotential lines have a constant
semi-minor axis b

I Hammer two nails at F1 and F2 and
attach the ends of a string of length
L > F1F2 to the nails. Tighten the
string with a pencil and draw. You
will draw an ellipse which therefore
satisfies

F1P + PF2 = L

|d|+ |d + ∆d| = L

This also applies to point C defining the minor semi-axis b
of the ellipse:

|d|+ |d+ ∆d| = L = 2

√(
|∆d

2

)2

+ b2

b(d) =
1

2

√
(|d|+ |d+ ∆d|)2 − |∆d|2
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The SFM interaction potential

I The focal line F1F2 defining generated ellipses with b = 0 means collision with
pedestrian/object j within the anticipation horizon [t, t+ τa]

I ⇒ potential should be highest for b(x, y) = 0 and decrease with b:

Φint(d) = AB exp

(
−b(d)

B

)
, b(d) =

1

2

√
(|d|+ |d+ ∆d|)2 − |∆d|2

I Potential depends on the present distance vector d = xi − xj and on the anticipated
distance vector change
I Elliptical specification II: ∆d = τa(vi − vj)
I Elliptical specification I: ∆d = τavi
I Circular specification: ∆d = 0

I parameters:
I interaction strength A, typically values around A = 2 m/s2

I range B, typically values around B = 1 m

I For the circular definition without anticipation, we have Φint(d) = ABe−|d|/B
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Questions

? Potentials if both pdestrians have the same velocity
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Proposal of an improved and simpler potential: Anticipated circular specification

The elliptical specification II shows the most plausible behaviour and performs best in
calibration/validation. Still it has some imperfections:

I Gradient, i.e., the derived social forces, diverge towards the focal points of the ellipse

I Ad-hoc nature. Why ellipses and the complicated construction?

I Answer: Use the circular potential but centered at a position where the two
pedestrians come closest within the anticipation horizon
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Anticipated circular specification

1. Calculate the time interval τ ′ of closest encounter within the anticipation time
horizon:

I anticipated distance vector da(τ ′) = d+ (vi − vj)τ ′
I Minimum distance reached (da perpendicular to vi − vj) at time

τmin = −d · (v − vj)
(v − vj)2

I anticipated time

τ ′ = max (0,min (τa, τmin))

2. Construct circular potential around the distance vector at t′:

Φint,mod(d) = AB exp

(
−|d

′|
B

)
, d′ = d+ (vi − vj)τ ′

I If the time of shortest encounter lies in the past, we have just the normal circular
potential

I Since the potential center generally is different for each point (x, y), we, in effect,
have an elliptical-like potential but without divergent gradients
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Comparison of potentials

Detail of original (left) and modified (right) interaction potentials for v1 = (1, 0) and
v2 = 0 near the focal point F1 = (0, 0) of the original SFM.
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I caused by a standing
or moving
pedestrian/compact
object (circular
specification)

I In the circular
specification, the own
velocity only
influences the
directional
dependence (not
shown here). The
velocity of the
interacting pedestrian
is ignored

SFM potential and forces on a pedestrian walking in NE direction ...
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I caused by a standing
pedestrian/compact
object (specification
II)

I or by
standing/moving
objects (specification
I)

I Note the different
potentials for moving
targets in spec I and II

SFM potential and forces on a pedestrian walking in NE direction ...
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I caused by a moving
pedestrian
(specification II)

SFM potential and forces on a pedestrian walking in NE direction ...
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I caused by a moving
pedestrian
(improved/modified
specification II)

I Although circular for
a given point (x, y), it
becomes elongated as
a function of (x, y)
because the center
(closest anticipated
distance) changes
with (x, y)

SFM potential and forces on a pedestrian walking in NE direction ...
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Deriving the force field from the potential

I The potential Φint is de-facto a “hill” with a ridge along the positions where the
subject pedestrian i expects a collision within the anticipation horizon.

I The potential force −∇Φint is directed “downhill”, i.e., away from potential collision
points

I Use the fact, that, for arbitrary constant vectors a, we have

∇d|d+ a| = d+ a

|d+ a|
= ed+a

Circular potential

fpot = −∇dΦint(d) = −∇d

(
ABe−

|d|
B

)
= Ae−

d
B∇d|d|

fpot = Ae−
d
B ed circular potential
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Deriving the force field for the elliptical specifications I and II
The two speciifcations differ only in the constant ∆d = viτa (I) and ∆d = (vi − vj)τa,
respectively

Φint(d) = ABe−
b(d)
B , b(d) =

1

2

√
(|d|+ |d+ ∆d|)2 − |∆d|2

fpot = −∇dΦint(d) = −∇d

(
ABe−

b(d)
B

)
= Ae−

d
B ∇d

(
b(d)

)
= Ae−

d
B
|d|+ |d+ ∆d|

4b
(ed + ed+∆d)

thread and nails
= Ae−

d
B

1

4

√
4 +

(
∆d

b

)2

(ed + ed+∆d) ,

fpot = Ae−
b(d)
B

√
1 +

(
∆d

2b(d)

)2(ed + ed+∆d

2

)
Elliptical specifications I and II
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Deriving the force field for the anticipated circular specification

This is like the potential for the circular specification, but at the anticipated position
d+ ∆d′ (shifted from d by a constant vector):

fpot = A exp

(
−|d+ ∆d′|

B

)
ed+∆d′ Anticipated circular specification

with

∆d′ = (vi − vj)τ ′,
τ ′ = max (0,min (τa, τmin)) ,

τmin = −d · (vi − vj)
(vi − vj)2

I If vi = vj , both the anticipated circular potential and the elliptical specification II
revert to the circular potential but not the elliptical specification I. (why?)
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Directionality
The potential force ignores that forces from pdestrians/objects ahead are stronger than
that in the back and that also relative speed should matter. Multiplicative approach:

f int = wfpot

(1) Classical SFM dependency on the viewing angle:

w(cosφ) = λ+ (1− λ)

(
1 + cosφ

2

)
, cosφ = −evi · ed
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Directionality (FVDM approach)

(2) Dependence on the approaching rate (generalisation of the FVDM relative speed
sensitivity):

w(ḋ) = max(0, 1− γḋ), ḋ = ed · (vi − vj) (1)
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From a symmetric to a directed asymmetric interaction:
Pedestrian at (x, y) walking to a target pedestrian moving to the right
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From the asymmetric interaction to the full force: adding the free force
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Viewing angle vs. approaching rate directional weighting
(example anticipated circular potential)
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11.2.3 Potential and force by obstacles

I Basically, obstacles and boundaries of walkable areas are like standing pedestrians:
One should not collid with/transgress them

I Small compact obstacles (poles, signposts, trees, pillars) can, in fact, be handled like
standing pedestrians

I For extended obstacles/boundaries this would be inefficient (a cordon of many
standing virtual pedestrians) and also biased (the additive effect of the forces
exaggerates the effect)

? What to do ?

! Use the fact that obstacles, boundaries etc are really immobile so as to precalculate a
global floor potential from all obstacles and boundaries

! Add anticipation in the same way as for defining the anticipated circular potential:
Calculate the anticipation point and take the gradient at that point

! Multiply a factor for the viewing angle and/or approaching rate as when interacting
with other pedestrians
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Potential and force by obstacles:
precalculate the obstacle floor field

I Identify all obstacles and
boundary objects

I Define a grid on the walkable
area. For each gridpoint (at x)
and each obstacle object k,
determine the distance vector
dk(x) to the neares point of this
object

I Ignore obstacles that are shielded
or too far away

I The global floor potential is
given by

Φobs(x) = AB
∑
k

e−
dk(x)

B
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Obstacle social forces on pedestrians

The procedure for a pedestrian at xi and veloc-
ity vi is the same as for the anticipated circular
interaction potential:

I Calculate the anticipated
position x′i along the line
{xi + t′vi : t′ ∈ [0.τa]}
with the shortest distance d′ to
any obstacle (or with the highest precalculated gradient)

I The obstacle social force, i.e., acceleration, is given by

fobs
i = −w

(
cosφobs

i

)
∇xΦobs(x′i)

I A bilinear interpolation on the precalculated grid is enough for calculating
the gradient

I If only a single obstacle is relevant, we have the anticipated circular
specification:

fobs = w
(
cosφobs

i

)
Ae−

d′
B ed′
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11.2.4 Model Parameters and Fundamental Diagram
Overview of the model parameters of the SFM

Parameter
normal
walking

Marathon
runners

comment

Desired speed v0 1.2 m/s 3 m/s free traffic

Speed adaptation time τ 1 s 1.5 s free traffic

Interaction strength A 2 m/s2 3 m/s2 of the order of the maximum
acceleration

Interaction range B 1 m 2 m decays by a factor 1/e per
distance increment B

Anticipation time τa 1 s 2 s
anticipation for collisions
assuming constant velocities

directionality λ 0.06 0.03 isotropic actio=reactio: λ = 1

relative speed sensitivity γ 1.5 1.0
alternative formulation of the
directionality (as in the FVDM)
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Fundamental diagram

I Because of the different possible geometric configurations, a fully 2d fundamental
diagram (FD) is not unique

I A simpler approach is to define a single-file fundamental diagram

I Because the number of interacting persons in single files increases linearly with
distance rather than quadratically, a single-file FD as a function of the 1d density ρ1d

also approximates a 2d FD as a function of the 2d density ρ

As usual in FDs, we have identical pedestrians with identical (center-center) distances
∆x = 1/ρ1d and identical speeds
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Derivation for full interactions without shielding

dvi
dt

=
v0 − vi
τ

+

∞∑
l=1

fil +

∞∑
m=1

fim

=
v0 − vi
τ

− 1

∞∑
l=1

Ae−l∆x/B + λ

∞∑
m=1

Ae−m∆x/B

=
v0 − vi
τ

−A(1− λ)

∞∑
l=1

e−l∆x/B

=
v0 − vi
τ

−A(1− λ)

( ∞∑
l=0

e−l∆x/B − 1

)
geometric series

=
v0 − vi
τ

−A(1− λ)

(
1

1− e−∆x/B
− 1

)
!

= 0

vi(∆x)→ V (∆x) = v0 − τA(1− λ)

(
e−∆x/B

1− e−∆x/B

)
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SFM fundamental diagrams for a single file without shielding

The value of

A such that

V (0.5 m) = 0

Q(ρ1d) = ρ1dV (1/ρ1d), V (∆x) = v0 − τA(1− λ)

(
e−∆x/B

1− e−∆x/B

)
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SFM FD for a single file with NN interactins (one front and back pedestrian)

The value of

A such that

VNN(0.5 m) = 0

VNN(∆x) corresponds to third line of the derivation with only l = 1:

Q(ρ1d) = ρ1dVNN(1/ρ1d), VNN(∆x) = v0 − τA(1− λ)e−∆x/B
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11.3: An alternative approach: PLEdestrian
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