Lecture 11: Models for Pedestrian Flow

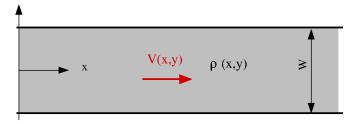
- 11.1 Macroscopic Models for Unidirectional Flow
 - 11.1.1 Elementary Macroscopic Variables of Twodimensional Flow
 - 11.1.2 Fundamental Diagramm
 - 11.1.3 Application
- 11.2 Microscopic Model I: Social-Force Model
 - 11.2.1 Free potential and force
 - 11.2.2 Pedestrian-pedestrian interactions
 - 11.2.3 Potential and force by obstacles
 - 11.2.4 Model Parameters and Fundamental Diagram
- 11.3: An alternative approach: PLEdestrian

DISCHARGE TRAFFIC Flow Dynamics

11.1 Macroscopic Models for Unidirectional Flow

- Basic difference to (lane-based) vehicular traffic: full *two-dimensionality*
- Can also be applied to disordered traffic of other *self-driven agents* such as non-lanebased traffic flow, cycling, Marathon runs, inline-skating, and crosscountry-ski events
- In contrast to microscopic pedestrian models such as the Social-Force Model, macroscopic pedestrian models are only suited for essentially unidirectional pedestrian flows
- Because of the two dimensions, we need to redefine density and introduce a new macroscopic quantity: flow density

11.1.1 Elementary Macroscopic Variables of Twodimensional Flow



- ▶ 2d density: $\rho(x, y, t) = \rho(x, t)$ [pedestrians/m² or peds/m²],
- ► Local velocity: $V(x, t) = (V, V_y)$ [m/s].
- Flow density: $J(x,t) = (J, J_y) = \rho V \text{ [peds/(ms)]}$
- **Effective 1d density** [peds/m]:

$$\rho_{1\mathsf{d}}(x,t) = \int_{y=-W/2}^{W/2} \rho(x,y) \, \mathrm{d}y \, \approx \rho W$$

Flow [peds/s]

$$Q = \int_{y=-W/2}^{W/2} J(x,y) \, \mathrm{d}y \approx \rho V W \approx \rho_{1\mathsf{d}} V$$

Hydrodynamic relation and continuity equation

hydrodynamic relations (vectorial and effective):

$$\boldsymbol{J} = \rho \boldsymbol{V}, \quad \boldsymbol{J} = \rho \boldsymbol{V}, \quad \boldsymbol{Q} = \rho_{1\mathsf{d}} \boldsymbol{V} = \rho \boldsymbol{W} \boldsymbol{V}$$

Vectorial continuity equation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial J_x}{\partial x} + \frac{\partial J_y}{\partial y} = 0$$

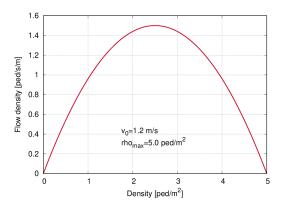
Effective continuity equation:

$$\frac{\partial \rho_{\rm 1d}}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

important:

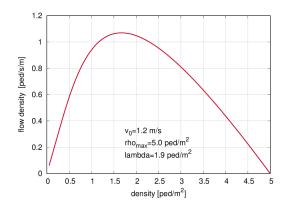
▶ In the effective continuity equation, lateral motion is introduced implicitly: For example, in a stationary situation, $\frac{\partial}{\partial t} = 0$, we have $Q = \rho WV = \text{const.}$ If W(x) narrows funnel-like, the 2d-density ρ increases by concentric lateral motion

11.1.2 Fundamental Diagramm



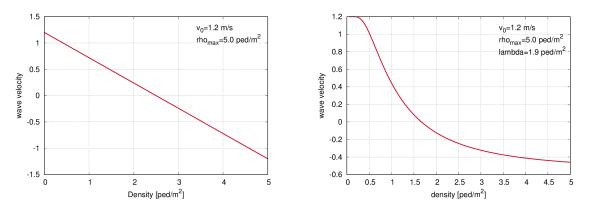
Parabolic FD a la Greenshields:

$$\begin{array}{lll} V_e(\rho) & = & V_0 \left(1 - \frac{\rho}{\rho_{\max}}\right), \\ \\ J_e(\rho) & = & V_0 \rho \left(1 - \frac{\rho}{\rho_{\max}}\right) \end{array}$$



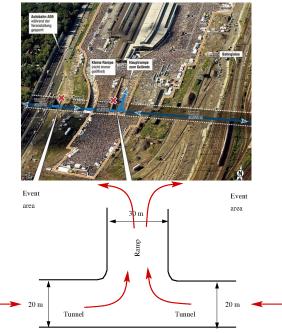
$$\begin{aligned} v_e(\rho) &= v_0 \left\{ 1 - \exp\left[-\lambda \left(\frac{1}{\rho} - \frac{1}{\rho_{\max}} \right) \right] \right\} \\ J_e(\rho) &= \rho V_e(\rho) \end{aligned}$$

Wave velocities



- ▶ Wave velocity $w(\rho) = J'(\rho)$
- ▶ Notice: derivative with respect to 2d density. Double density means $1/\sqrt{2}$ times the average distance but more interacting people

11.1.3 Application I: Loveparade in Duisburg



Example for macroscopic event and evacuation planning:

- Assume unidirectional flow and a capacity density of $J_{max} = 1 \text{ ped/s/m}$ (a little bit lower than that of the Weidmann FD)
- Identify the bottleneck: The ramp to the event site at a width W = 30 m (the two tunnels have a summed cross section of W = 40 m)
- Calculate the bottleneck strength assuming no further obstacles:

 $C=WJ_{\mathsf{max}}=30\,\mathrm{ped/m}=108\,000\,\mathrm{ped/h}$

 Best case for three hours approach time (continuous unidirectional flow, no obstacles):

Application II: Mixed traffic

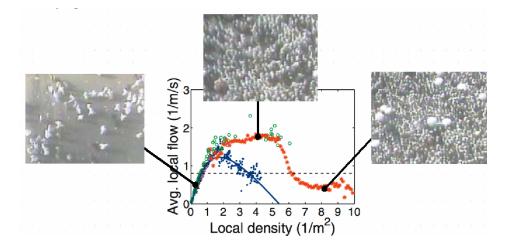
Application III: planning Marathon sports events

Planning of a starting scheme

- Define several starting groups *i* with a maximum number n_i of athletes, each, ordered to expected performance (best are first)
- Define a time delay \(\tau\) between the starting shots of every group ("wave start"; the individual athlete's time starts when passing an electronic RFID gate)
- Identify the bottlenecks (often near the start) and estimate the flow profile from the expected speeds, their dispersion, and the start time delays
- Check if the maximum flow is below the bottleneck capacity; otherwise, change n_i and τ

Application IV: Large-scale pedestrian streams in Mekka

Application IV: Large-scale pedestrian streams in Mekka



11.2 Microscopic Model I: Social-Force Model

- In contrast to macroscopic models, microscopic pedestrian models are suited to model any pedestrian motion, whether directed or not:
- Any pedestrian can have its individual destination
- The models of this class are fully twodimensional; all pedestrians can move anywhere inside allowed regions
- The first and most prominent representative is the Social Force Model (SFM)
- More generally, the SFM is a model for self-driven particles or active particles, sometimes also called agents (no stirring or shaking involved)
- ▶ In analogy to Newtonian forces, the SFM pedestrian is driven by social forces
- In extended models, additional physical forces are modelled in case of a direct contact. However, this makes the equations hard to solve because it entails stiff differential equations (involving several time scales)

Overall specification of the Social-Force Model

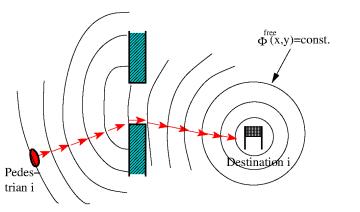
Pedestrians are active particles of mass 1, i.e., force equals acceleration:

$$\dot{\boldsymbol{v}}_i \equiv \frac{\mathrm{d}\boldsymbol{v}_i}{\mathrm{d}t} = \boldsymbol{f}_i^{\mathsf{free}} + \sum_{j \neq i} \boldsymbol{f}_{ij}^{\mathsf{int}} + \sum_k \boldsymbol{f}_{ik}^{\mathsf{walls}}.$$

- The free force f^{free} directs the pedestrians to their respective destinations. It can be modelled by a gradient of a free potential, e.g., indicating the shortest distance to the destination
- The pedestrian-pedestrian interaction forces f^{int}_{ij} acting from pedestrian j onto i are generally repulsive to avoid collisions and depends on the distance, directions, and the velocity vectors of both pedestrians
- The wall forces keep the pedestrians on the walkable area, i.e., away from the boundaries or from fixed compact obstacles. Both can be modelled as an obstacle floor field
- ► The floor fields and free potentials are static scalar fields Φ(x, y) defined on the walkable area. They can be pre-calculated for all boundaries, obstacles, and possible destinations

11.2.1 Free potential and force

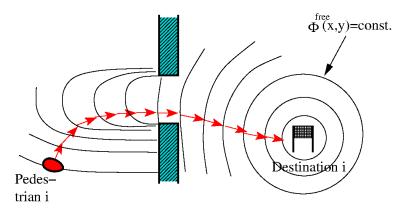
 Free force corresponds to a vectorial free-traffic OVM



$$oldsymbol{f}_i^{\mathsf{free}} = rac{oldsymbol{v}_{0i} - oldsymbol{v}_i}{ au}$$

- The desired velocity
 v_{0i} = v₀∇Φ^{free} is given by the gradient ∇ = (∂x, ∂y) of the free potential
- ► The free potential Φ^{free}(x, y) gives the distance to the destination on the shortest possible path
- Model parameters: speed adaptation time τ and desired speed (magnitude of v_{0i}) Give plausible values for τ and v₀

Changing the pedestrian's preferences



- If the preference is to avoid "pancake" like crowding to leave doors etc, change the floor field to no longer reflect directly the shortest distance
- Here pedestrians prefer a queue rather than a "pancake"
- Rather than the gradient, just take v₀ times the unit vector of the gradient (Why was the gradient always a unit vector, in the last slide?)

11.2.2 Pedestrian-pedestrian interactions

Assumptions:

- The forces should be *repulsive*. ("Mexican-hat" potentials modelling attractive forces for couples, families, or friends will not be considered but can be added easily.)
- Generally, the forces should depend on the velocity vectors (speeds and directions) of both pedestrians. This also includes simple anticipation heuristics over anticipation time τ_a
- Unlike physical forces, there is no momentum conservation (*actio=reactio*). Instead, forces from objects in viewing direction are stronger than that the nearly vanishing ones on the back. This anisotropy is the basis for fundamental diagrams
 - ? Compare with car-following models
 - ? What would a fundamental diagram look like for interaction forces satisfying *actio=reactio*?

 \Rightarrow general structure for a force from pedestrian/vehicle/compact obstacle j onto pedestrian i:

$$\boldsymbol{f}_{ij} = \boldsymbol{f}_{ij}(\boldsymbol{x}_i, \boldsymbol{x}_j, \boldsymbol{v}_i, \boldsymbol{v}_j; \tau_a)$$

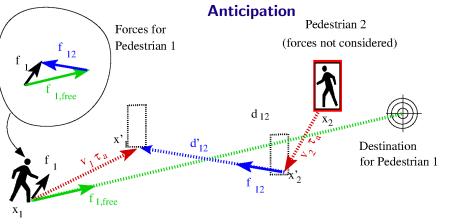
Further simplifying assumptions for the interactions

The general structure implies two functions $f_x(.)$ and $f_y(.)$ with eight dynamic arguments (the components of the two position and velocity vectors), each.

Rather complicated \Rightarrow Simplify further

- ▶ Translational invariance: Dependence on the **distance vector** $d_{ij} = x_i x_j$, only, and not separately on x_i and x_j in difference vectors, the subject always comes first!
- ▶ Without the viewing angle dependency, the forces can be written as a gradient of an interaction potential, f_{pot} = ∇_dΦ^{int}(d, v_i v_j)
- The potential/potential force is either Galilei invariant, i.e., depends on the relative velocity vector v_i v_j, only (Elliptical specification II), or the velocity of the interacting pedestrian/object j is ignored (Elliptical specification I), or there is neither velocity dependence nor anticipation (Circular specification). (*in any case, the free part and the obstacles break this invariance on the system level*)
- ▶ The viewing angle dependency is just a multiplicative prefactor $w(\cos \phi)$ of the cosine of the viewing angle, $\cos \phi = -\mathbf{d} \cdot \mathbf{v}_i / (|\mathbf{d}| |\mathbf{v}_i|)$
- \Rightarrow Force expression reduced to a scalar potential of only four dynamical variables:

$$\boldsymbol{f}_{ij} = w(\cos\phi)\boldsymbol{f}_{ij}^{\mathsf{pot}}(\boldsymbol{d},\boldsymbol{v}_i-\boldsymbol{v}_j) = -w(\cos\phi)\boldsymbol{\nabla}_{\boldsymbol{d}}\Phi^{\mathsf{int}}(\boldsymbol{d},\boldsymbol{v}_i-\boldsymbol{v}_j)$$



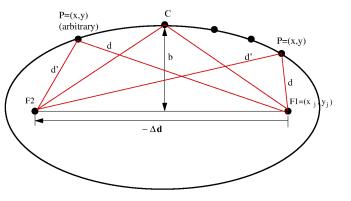
Pedestrian 1

? Check, in which specification pedestrian *i* will pass pedestrian *j* to the left or right to avoid a collision lacksim Present distance vector $oldsymbol{d}_{ij} = oldsymbol{x}_i - oldsymbol{x}_j$

- Anticipated distance change:
 - ▶ Elliptical specification II: $\Delta d_{ij} = \tau_a (v_i v_j)$
 - Elliptical specification I: $\Delta d_{ij} = \tau_a v_i$
 - Circular specification (no anticipation):
 \Delta d_{ij} = 0

- Anticipated distance vector: $m{d}'_{ij} = m{d}_{ij} + \Delta m{d}_{ij}$

Constructing the interaction potential for the elliptical specifications



This also applies to point C defining the minor semi-axis b of the ellipse:

$$\begin{aligned} |\boldsymbol{d}| + |\boldsymbol{d} + \Delta \boldsymbol{d}| &= L \quad = \quad 2\sqrt{\left(\frac{|\Delta \boldsymbol{d}|}{2}\right)^2 + b^2} \\ b(\boldsymbol{d}) &= \quad \frac{1}{2}\sqrt{\left(|\boldsymbol{d}| + |\boldsymbol{d} + \Delta \boldsymbol{d}|\right)^2 - |\Delta \boldsymbol{d}|^2} \end{aligned}$$

- Determine the present collision point F₁ = x_j for i and the present location F₂ = x_j - Δd for an anticipated collision after τ_a
- Define ellipses by the focal points F1 and F2 and the present distance vector d
- Equipotential lines have a constant semi-minor axis b
- Hammer two nails at F1 and F2 and attach the ends of a string of length $L > \overline{F_1F_2}$ to the nails. Tighten the string with a pencil and draw. You will draw an ellipse which therefore satisfies

$$F_1P + PF_2 = L$$

$$|\boldsymbol{d}| + |\boldsymbol{d} + \Delta \boldsymbol{d}| = L$$

The SFM interaction potential

► The focal line $\overline{F_1F_2}$ defining generated ellipses with b = 0 means collision with pedestrian/object j within the anticipation horizon $[t, t + \tau_a]$

▶ ⇒ potential should be highest for b(x, y) = 0 and decrease with b:

$$\Phi^{\mathsf{int}}(\boldsymbol{d}) = AB \, \exp\left(\frac{-b(\boldsymbol{d})}{B}\right), \quad b(\boldsymbol{d}) = \frac{1}{2}\sqrt{\left(|\boldsymbol{d}| + |\boldsymbol{d} + \Delta \boldsymbol{d}|\right)^2 - |\Delta \boldsymbol{d}|^2}$$

Potential depends on the present distance vector $d = x_i - x_j$ and on the anticipated distance vector change

- Elliptical specification II: $\Delta d = \tau_a (v_i v_j)$
- Elliptical specification I: $\Delta d = \tau_a v_i$
- Circular specification: $\Delta d = 0$

parameters:

- interaction strength A, typically values around $A = 2 \text{ m/s}^2$
- **range** B, typically values around B = 1 m

For the circular definition without anticipation, we have $\Phi^{int}(d) = ABe^{-|d|/B}$

Questions

? Potentials if both pdestrians have the same velocity

Proposal of an improved and simpler potential: Anticipated circular specification

The *elliptical specification II* shows the most plausible behaviour and performs best in calibration/validation. Still it has some imperfections:

- ► Gradient, i.e., the derived social forces, diverge towards the focal points of the ellipse
- ► Ad-hoc nature. Why ellipses and the complicated construction?
- Answer: Use the circular potential but centered at a position where the two pedestrians come closest within the anticipation horizon

Anticipated circular specification

- 1. Calculate the time interval τ' of closest encounter within the anticipation time horizon:
 - ▶ anticipated distance vector $m{d}_a(au') = m{d} + (m{v}_i m{v}_j) au'$
 - Minimum distance reached (d_a perpendicular to $v_i v_j$) at time

$$\tau_{\min} = -\frac{\boldsymbol{d} \cdot (\boldsymbol{v} - \boldsymbol{v}_j)}{(\boldsymbol{v} - \boldsymbol{v}_j)^2}$$

anticipated time

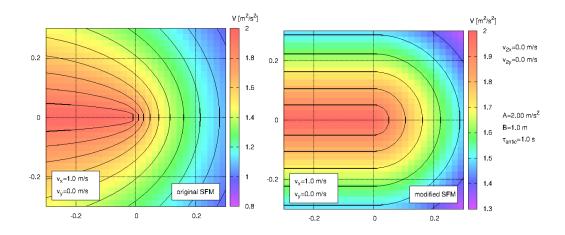
$$\tau' = \max\left(0, \min\left(\tau_a, \tau_{\mathsf{min}}\right)\right)$$

2. Construct circular potential around the distance vector at t':

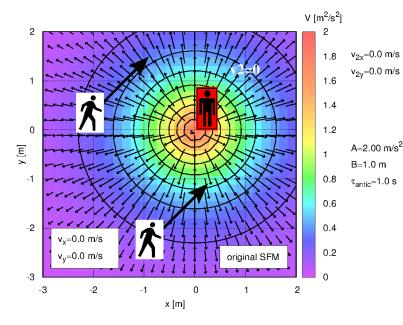
$$\Phi^{\mathsf{int},\mathsf{mod}}(\boldsymbol{d}) = AB \exp\left(-\frac{|\boldsymbol{d}'|}{B}\right), \quad \boldsymbol{d}' = \boldsymbol{d} + (\boldsymbol{v}_i - \boldsymbol{v}_j)\tau'$$

- If the time of shortest encounter lies in the past, we have just the normal circular potential
- Since the potential center generally is different for each point (x, y), we, in effect, have an elliptical-like potential but without divergent gradients

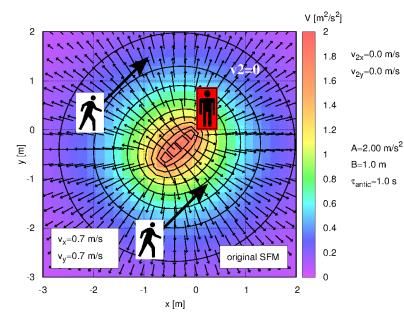
Comparison of potentials



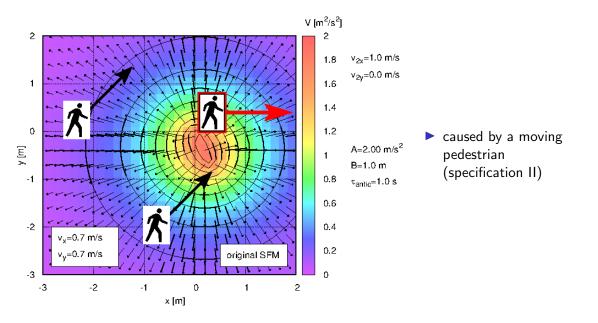
Detail of original (left) and modified (right) interaction potentials for $v_1 = (1,0)$ and $v_2 = 0$ near the focal point $F_1 = (0,0)$ of the original SFM.

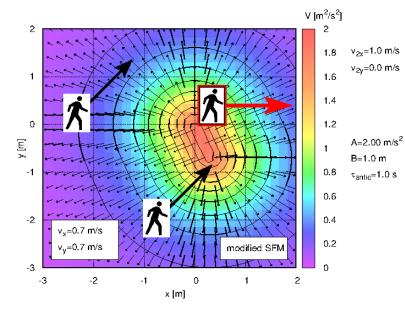


- caused by a standing or moving pedestrian/compact object (circular specification)
- In the circular specification, the own velocity only influences the directional dependence (not shown here). The velocity of the interacting pedestrian is ignored



- caused by a standing pedestrian/compact object (specification II)
- or by standing/moving objects (specification I)
- Note the different potentials for moving targets in spec I and II





 caused by a moving pedestrian (improved/modified specification II)

Although circular for a given point (x, y), it becomes elongated as a function of (x, y) because the center (closest anticipated distance) changes with (x, y)

Deriving the force field from the potential

- The potential Φ^{int} is de-facto a "hill" with a ridge along the positions where the subject pedestrian *i* expects a collision within the anticipation horizon.
- ► The potential force -∇Φ^{int} is directed "downhill", i.e., away from potential collision points
- Use the fact, that, for arbitrary constant vectors a, we have

$$|oldsymbol{
abla}_d|oldsymbol{d}+oldsymbol{a}|=rac{oldsymbol{d}+oldsymbol{a}}{|oldsymbol{d}+oldsymbol{a}|}=oldsymbol{e}_{oldsymbol{d}+oldsymbol{a}}|$$

Circular potential

$$\boldsymbol{f}^{\mathsf{pot}} = -\boldsymbol{\nabla}_{d} \Phi^{\mathsf{int}}(\boldsymbol{d}) = -\boldsymbol{\nabla}_{d} \left(ABe^{-\frac{|\boldsymbol{d}|}{B}} \right)$$
$$= Ae^{-\frac{\boldsymbol{d}}{B}} \boldsymbol{\nabla}_{d} |\boldsymbol{d}|$$

 $\boldsymbol{f}^{\mathsf{pot}} = A e^{-rac{d}{B}} \boldsymbol{e}_d$ circular potential

Deriving the force field for the elliptical specifications I and II

The two specifications differ only in the constant $\Delta d = v_i \tau_a$ (I) and $\Delta d = (v_i - v_j) \tau_a$, respectively

$$\Phi^{\mathsf{int}}(\boldsymbol{d}) = ABe^{-\frac{b(\boldsymbol{d})}{B}}, \quad b(\boldsymbol{d}) = \frac{1}{2}\sqrt{\left(|\boldsymbol{d}| + |\boldsymbol{d} + \Delta \boldsymbol{d}|\right)^2 - |\Delta \boldsymbol{d}|^2}$$

$$\begin{split} \boldsymbol{f}^{\mathsf{pot}} &= -\boldsymbol{\nabla}_{d} \boldsymbol{\Phi}^{\mathsf{int}}(\boldsymbol{d}) &= & -\boldsymbol{\nabla}_{d} \left(ABe^{-\frac{b(\boldsymbol{d})}{B}} \right) \\ &= & Ae^{-\frac{\boldsymbol{d}}{B}} \; \boldsymbol{\nabla}_{d} \big(b(\boldsymbol{d}) \big) \\ &= & Ae^{-\frac{\boldsymbol{d}}{B}} \; \frac{|\boldsymbol{d}| + |\boldsymbol{d} + \Delta \boldsymbol{d}|}{4b} \left(\boldsymbol{e}_{\boldsymbol{d}} + \boldsymbol{e}_{\boldsymbol{d} + \Delta \boldsymbol{d}} \right) \\ & \text{thread and nails} \; & Ae^{-\frac{\boldsymbol{d}}{B}} \; \frac{1}{4} \sqrt{4 + \left(\frac{\Delta \boldsymbol{d}}{b}\right)^{2}} \left(\boldsymbol{e}_{\boldsymbol{d}} + \boldsymbol{e}_{\boldsymbol{d} + \Delta \boldsymbol{d}} \right), \end{split}$$

$$\boldsymbol{f}^{\mathsf{pot}} = A e^{-\frac{b(\boldsymbol{d})}{B}} \sqrt{1 + \left(\frac{\Delta \boldsymbol{d}}{2b(\boldsymbol{d})}\right)^2} \left(\frac{\boldsymbol{e_d} + \boldsymbol{e_{d+\Delta d}}}{2}\right) \quad \text{Elliptical specifications I and II}$$

Deriving the force field for the anticipated circular specification

This is like the potential for the circular specification, but at the anticipated position $d + \Delta d'$ (shifted from d by a constant vector):

$$f^{pot} = A \exp\left(-\frac{|d+\Delta d'|}{B}\right) e_{d+\Delta d'}$$
 Anticipated circular specification

with

$$\begin{aligned} \Delta \boldsymbol{d}' &= (\boldsymbol{v}_i - \boldsymbol{v}_j) \tau', \\ \tau' &= \max\left(0, \min\left(\tau_a, \tau_{\min}\right)\right), \\ \tau_{\min} &= -\frac{\boldsymbol{d} \cdot (\boldsymbol{v}_i - \boldsymbol{v}_j)}{(\boldsymbol{v}_i - \boldsymbol{v}_j)^2} \end{aligned}$$

▶ If $v_i = v_j$, both the anticipated circular potential and the elliptical specification II revert to the circular potential but not the elliptical specification I. (why?)

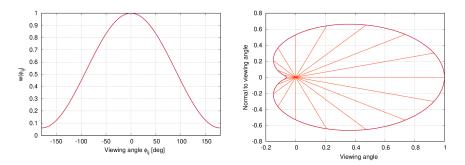
Directionality

The potential force ignores that forces from pdestrians/objects ahead are stronger than that in the back and that also relative speed should matter. Multiplicative approach:

 $\boldsymbol{f}^{\mathsf{int}} = w \boldsymbol{f}^{\mathsf{pot}}$

(1) Classical SFM dependency on the viewing angle:

$$w(\cos\phi) = \lambda + (1-\lambda)\left(\frac{1+\cos\phi}{2}\right), \quad \cos\phi = -\boldsymbol{e}_{v_i}\cdot\boldsymbol{e}_{o_i}$$



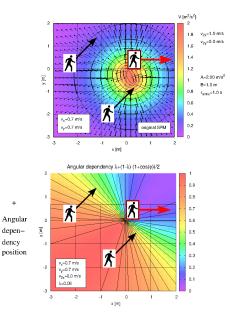
Directionality (FVDM approach)

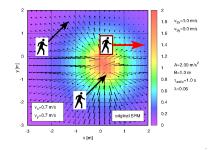
(2) Dependence on the approaching rate (generalisation of the FVDM relative speed sensitivity):

$$w(\dot{d}) = \max(0, 1 - \gamma \dot{d}), \quad \dot{d} = \boldsymbol{e}_d \cdot (\boldsymbol{v}_i - \boldsymbol{v}_j) \tag{1}$$

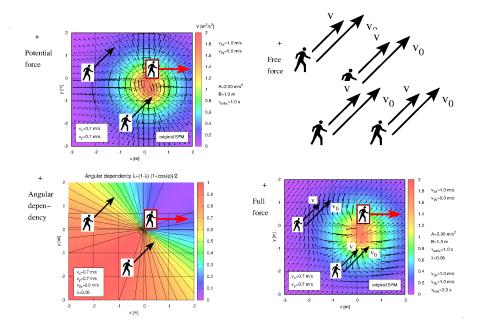


From a symmetric to a directed asymmetric interaction: Pedestrian at (x,y) walking to a target pedestrian moving to the right





From the asymmetric interaction to the full force: adding the free force



Viewing angle vs. approaching rate directional weighting (example anticipated circular potential)



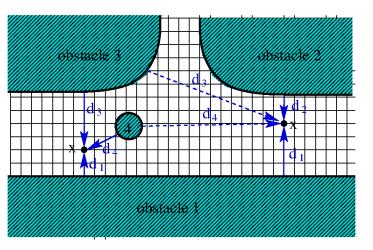
11.2.3 Potential and force by obstacles

- Basically, obstacles and boundaries of walkable areas are like standing pedestrians: One should not collid with/transgress them
- Small compact obstacles (poles, signposts, trees, pillars) can, in fact, be handled like standing pedestrians
- For extended obstacles/boundaries this would be inefficient (a cordon of many standing virtual pedestrians) and also biased (the additive effect of the forces exaggerates the effect)

? What to do ?

- ! Use the fact that obstacles, boundaries etc are really immobile so as to precalculate a global floor potential from all obstacles and boundaries
- ! Add anticipation in the same way as for defining the anticipated circular potential: Calculate the anticipation point and take the gradient at that point
- ! Multiply a factor for the viewing angle and/or approaching rate as when interacting with other pedestrians

Potential and force by obstacles: precalculate the obstacle floor field



- Identify all obstacles and boundary objects
- Define a grid on the walkable area. For each gridpoint (at x) and each obstacle object k, determine the distance vector d_k(x) to the neares point of this object
- Ignore obstacles that are shielded or too far away
- The global floor potential is given by

$$\Phi^{\mathsf{obs}}(\pmb{x}) = AB\sum_k e^{-\frac{d_k(\pmb{x})}{B}}$$

II. Mode

Obstacle social forces on pedestrians

The procedure for a pedestrian at x_i and velocity v_i is the same as for the anticipated circular interaction potential:

- Calculate the anticipated position x'_i along the line {x_i + t'v_i : t' ∈ [0.τ_a]} with the shortest distance d' to any obstacle (or with the highest precalculated gradient)
 The obstacle social force, i.e., acceleration, is given by
 f^{obs}_i = -w (cos φ^{obs}_i) ∇_xΦ^{obs}(x'_i)
- A bilinear interpolation on the precalculated grid is enough for calculating the gradient
- If only a single obstacle is relevant, we have the anticipated circular specification:

$$\boldsymbol{f}^{\mathsf{obs}} = w\left(\cos\phi_{i}^{\mathsf{obs}}
ight) A e^{-rac{d'}{B}} \ \boldsymbol{e}_{d'}$$

11.2.4 Model Parameters and Fundamental Diagram

Overview of the model parameters of the SFM

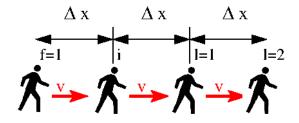
Parameter	normal walking	Marathon runners	comment
Desired speed v_0	1.2 m/s	3 m/s	free traffic
Speed adaptation time $ au$	1s	1.5 s	free traffic
Interaction strength A	$2\mathrm{m/s^2}$	$3\mathrm{m/s^2}$	of the order of the maximum acceleration
Interaction range B	1 m	2 m	decays by a factor $1/e$ per distance increment B
Anticipation time $ au_a$	1 s	$2\mathrm{s}$	anticipation for collisions assuming constant velocities
directionality λ	0.06	0.03	isotropic <i>actio=reactio</i> : $\lambda = 1$
relative speed sensitivity γ	1.5	1.0	alternative formulation of the directionality (as in the FVDM)

Traffic Flow Dynamics

Fundamental diagram

- Because of the different possible geometric configurations, a fully 2d fundamental diagram (FD) is not unique
- A simpler approach is to define a single-file fundamental diagram
- Because the number of interacting persons in single files increases linearly with distance rather than quadratically, a single-file FD as a function of the 1d density ρ_{1d} also approximates a 2d FD as a function of the 2d density ρ

As usual in FDs, we have identical pedestrians with identical (center-center) distances $\Delta x = 1/\rho_{1d}$ and identical speeds

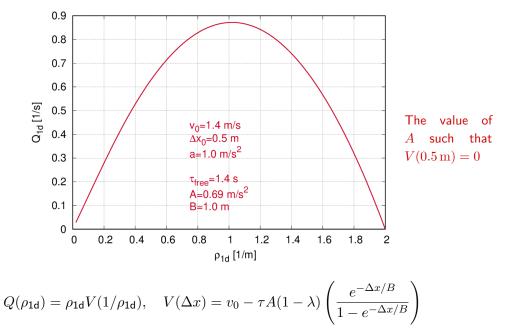


/

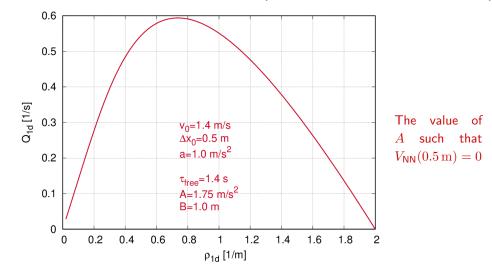
Derivation for full interactions without shielding

$$\begin{aligned} \frac{\mathrm{d}v_i}{\mathrm{d}t} &= \frac{v_0 - v_i}{\tau} + \sum_{l=1}^{\infty} f_{il} + \sum_{m=1}^{\infty} f_{im} \\ &= \frac{v_0 - v_i}{\tau} - 1 \sum_{l=1}^{\infty} A e^{-l\Delta x/B} + \lambda \sum_{m=1}^{\infty} A e^{-m\Delta x/B} \\ &= \frac{v_0 - v_i}{\tau} - A(1 - \lambda) \sum_{l=1}^{\infty} e^{-l\Delta x/B} \\ &= \frac{v_0 - v_i}{\tau} - A(1 - \lambda) \left(\sum_{l=0}^{\infty} e^{-l\Delta x/B} - 1\right) \\ &\text{geometric series} \quad \frac{v_0 - v_i}{\tau} - A(1 - \lambda) \left(\frac{1}{1 - e^{-\Delta x/B}} - 1\right) \stackrel{!}{=} 0 \\ &v_i(\Delta x) \to V(\Delta x) = v_0 - \tau A(1 - \lambda) \left(\frac{e^{-\Delta x/B}}{1 - e^{-\Delta x/B}}\right) \end{aligned}$$

SFM fundamental diagrams for a single file without shielding



SFM FD for a single file with NN interactins (one front and back pedestrian)



 $V_{\rm NN}(\Delta x)$ corresponds to third line of the derivation with only l = 1: $Q(\rho_{\rm 1d}) = \rho_{\rm 1d} V_{\rm NN}(1/\rho_{\rm 1d}), \quad V_{\rm NN}(\Delta x) = v_0 - \tau A(1-\lambda)e^{-\Delta x/B}$

11.3: An alternative approach: PLEdestrian