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Traffic Flow Dynamics 9. Car-Following Models Based on Driving Strategies 9.1 Motivation

9.1 Motivation
The plausibility criteria of the last lesson and model completeness are necessary but not
sufficient for a realistic simulation. Additional requirements for car-following models
(CF models) include

I No accidents ⇒ not satisfied by the OVM

I The accelerations v̇ and braking decelerations have to be physically possible, e.g.
−9 m/s2 ≤ v̇ ≤ 4 m/s2 ⇒ not satisfied by the OVM, Newell’s micromodel, or the CA
models

I Furthermore, CF models should reflect a “normal” comfortable driving style in
normal situations, e.g., |v̇| < 2 m/s2 depending on the driving style ⇒ distinguish
between emergency and normal driving

I For highly dynamic situations such as approaching a red traffic lights/standing
vehicles, anticipation according to elementary kinematics (e.g., the minimum stopping
deceleration bkin = v2/(2s)) is necessary ⇒ incorporate some driving strategy

I The model parameters should reflect distinct aspects of the driving style
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9.2 Gipps’ model

The Gipps model explicitely satisfies the kinematics in highly dynamic situations

v(t+ T ) = min [vfree, vsafe]

I The free-acceleration part obeys, e.g., vfree = min(v(t) + aT, v0) with acceleration a
or some more complicated acceleration profile.

I The safe speed is based on following heuristic worst-case scenario where a minimum
gap s0 should be kept at all times:

I The leader suddenly brakes at deceleration bl to a full stop,
I the follower brakes at deceleration b after a reaction time T . For extra safety, another

“brake hitting time” ϑ is assumed (somewhat inconsequential),
I constant acceleration from v(t) to vsafe during the reaction time T , constant speed

vsafe during the brake hitting time ϑ
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Derivation of the Gipps model: Overview

−→ v −→ vl
Leader starts
braking to a stop
at deceleration bl

Follower starts
braking to a stop
at deceleration b
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Derivation of the Gipps model

Find the safe speed v(t+ T ) = vsafe:

xstop − x =
v(t) + vsafe

2
T+vsafeϑ+

v2safe

2b

x
stop
l − xl =

v2l
2bl

s0
!
= sstop = s+ (xstop

l − xl)− (xstop − x)

= s+
v2l
2bl
−
(
v(t) + vsafe

2
T+vsafeϑ+

v2safe

2b

)
Assume a “brake hitting time” ϑ = T/2 ⇒ quadratic equation

v2safe + 2bTvsafe + bvT − v2l
b

bl
− 2b(s− s0) = 0
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The simplified Gipps model

The simplified version makes following assumptions:

I Constant acceleration a in the free-flow regime until reaching the desired speed v0

I No acceleration is assumed during the reaction time T and the brake hitting time ϑ is
zero. So, these assumptions just calculate the speed which would prevent a crash in
the worst case if it were adopted instantaneously and held constant during T . Hence,
the reaction distance of the follower is simply given by ∆xreact = v(t)T = vsafeT

I The leader and the follower have the same braking capabilities bl = b

This leads to following quadratic equation:

v2safe + 2bTvsafe − v2l − 2b(s− s0) = 0
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The final Gipps models

v(t+ T ) = min [v + afree(v)T, vsafe(s, v, vl)] Full Gipps Model

afree(v) = 2.5a

(
1− v

v0

)√
0.025 +

v

v0
,

vsafe(s, v, vl) = −b(T/2 + ϑ) +

√
b2(T/2 + ϑ)2 + 2b(s− s0) + v2l

b

bl
− vbT

The model is for general brake hitting times ϑ. For the standard value ϑ = T/2, simplify

b(T/2 + ϑ)→ bT

v(t+ T ) = min [v + aT, v0, vsafe(s, vl)] Simplified Gipps Model

vsafe(s, vl) = −bT +
√
b2T 2 + 2b(s− s0) + v2l

Freeway parameters: v0 = 35 m/s, a = b = bl = 1.5 m/s2, T = 1.1 s, ϑ = T/2, s0 = 2 m
City parameters: just reduce the desired speed v0
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Homogeneous steady state and fundamental diagram
of the Gipps models I: Free-flow regime

Unlike the past CF-models, the Gipps model(s) do not have an explicit fundamental
diagram (FD) given by the OV function ⇒ must be calculated by assuming a stationary
steady state:

I Stationarity: d
dt = 0, so v(t+ T ) = v(t)

I Homogeneity: d
dx = 0, so vl(t) = v(t)

Free-flow regime:

v(t+ T ) = v(t) ⇒ afree(v) = 0 ⇒ v = v0

Does the free-flow Gipps model include any interactions in the free-flow regime?
No, not any! strict separation of regimes by the min-function!
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Homogeneous steady state and fundamental diagram
of the Gipps models II: Interaction regime

Here, the second part of the min-function applies:

v(t+ T ) = v = vsafe = vl

v = −b(T/2 + ϑ) +

√
b2(T/2 + ϑ)2 + 2b(s− s0) + v2

b

bl
− vbT

(
v + b(T/2 + ϑ)

)2
= b2(T/2 + ϑ)2 + 2b(s− s0) + v2

b

bl
− vbT

Quadratic equation for ve(s) or linear equation for se(v):

sGipps
e (v) = s0 + vT + vϑ+

v2

2b

(
1− b

bl

)
Shape of the FD for the special case of the simplified Gipps model?
se = s0 + vT ⇒ triangular FD
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The Drivers of the Gipps
model become more defen-
sive

I with increasing reaction
time T and brake
hitting times ϑ

I with increasing implied
leader deceleration bl

? Why traffic becomes
unstable for bl < b?

! Since the follower
thinks he/she can brake
harder than the leader.
Along the whole string
of vehicles ...
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Gipps model acceleration function

⇒ accGippsSimple
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Simplified Gipps model acceleration function

⇐ accGipps ⇒ accIDM
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Factsheet of the original Gipps model with ϑ = 0.06

freeway with on-ramp city with traffic lights

⇐ Gipps GippsSimple ⇒



Traffic Flow Dynamics 9. Car-Following Models Based on Driving Strategies 9.2 Gipps’ Model

Factsheet of the simplified Gipps model

freeway with on-ramp city with traffic lights

⇐ GippsTheta006 IDM ⇒
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9.3 Intelligent Driver Model (IDM)

Probably the most parsimonious car-following model satisfying following conditions:

I All plausibility conditions satisfied

I smooth driving regime transitions (i.e., a smooth or even differentiable acceleration
function), unlike the Gipps model

I collision free if physically possible

I unique feature: Continuous and stable transition from an emergency to a regular
braking maneuver by an intelligent driving strategy

I all model parameters are intuitive describing distinct aspects of the driving behavior:
aggressive/timid, anticipative/short-sighted, responsive/sleepy, and of course
slow/fast
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IDM equations

dv

dt
= a

[
1−

(
v

v0

)4

−
(
s∗(v, vl)

s

)2
]

IDM acceleration

free acceleration: a[1− (v/v0)
4], repulsive force: −a(s∗/s)2

s∗(v, vl) = s0 + max

(
0, vT +

v(v − vl)
2
√
ab

)
desired gap

Parameter Cars High-
way

Cars City Trucks Hwy Bicycles

Desired speed v0 120 km/h 50 km/h 80 km/h 20 km/h
Time gap T 1.0 s 1.0 s 1.8 s 0.6 s
Minimum gap s0 2m 2m 3m 0.4m
Acceleration a 1.5m/s2 2.0m/s2 0.5m/s2 1.0m/s2

Comf. deceleration b 1.5m/s2 2.0m/s2 1.0m/s2 1.5m/s2
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Driving styles

Aggressive driver:
v0, a and b high, T and s0 low

Experienced responsive driver:
a high, b low, rest normal

Relaxed driver:
v0, a low, b normal, T and s0 high

Experienced defensive driver:
v0, a normal, b low, T and s0 high
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IDM acceleration function

⇐ accGippsSimple ⇒ accIDM+
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IDM properties I: steady state

? Calculate the homogeneous steady state

! dv
dt = 0, s∗ = s0 + vT

0 = a

[
1−

(
v
v0

)4
−
(
s0+vT

s

)2]
can be solved for s = se(v):

se(v) = s0+vT√
1−(v/v0)4

? How to derive a macroscopic
fundamental diagram (FD) out of se(ρ)

! Only possible as a parametric function of
the speed v. With the vehicle length l, we
have s = 1/ρ− l ⇒

ρ(v) =
1

se(v) + l
,

Q(v) = vρ(v)

simulate ...
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IDM properties II: the “intelligent” braking stratey

I “Extreme” assumptions s0 = T = 0, vl = 0, so s∗ = v2/(2
√
ab)

I Consider only the repulsive term:

dv

dt
= −a

(
s∗

s

)2

= − av4

4abs2
= −

(
v2

2s

)2
1

b

!
= −

b2kin

b

I At a given dynamic state, the kinematic deceleration bkin = v2

2s is the minimum
deceleration avoiding a crash. When, this situation is dynamically “safe” or “under
control”? If bkin ≤ b

I How manages the IDM to not brake too early but bring a critical situation under

control? Rewriting dv
dt = −

b2
kin
b reveals the trick:

I Situation safe or bkin < b⇒ |dvdt | < bkin ⇒ brake less than bkin: too early
is bad!

I Situation critical or bkin > b⇒ |dvdt | > bkin ⇒ brake more than bkin: get sit-
uation under control!

In both cases, the comfortable deceleration b is dynamically reached!
simulate ...
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dv
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I At a given dynamic state, the kinematic deceleration bkin = v2

2s is the minimum
deceleration avoiding a crash. When, this situation is dynamically “safe” or “under
control”? If bkin ≤ b

I How manages the IDM to not brake too early but bring a critical situation under

control? Rewriting dv
dt = −

b2
kin
b reveals the trick:

I Situation safe or bkin < b⇒ |dvdt | < bkin ⇒ brake less than bkin: too early
is bad!

I Situation critical or bkin > b⇒ |dvdt | > bkin ⇒ brake more than bkin: get sit-
uation under control!

In both cases, the comfortable deceleration b is dynamically reached!
simulate ...
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Factsheet of the Intelligent-Driver Model (IDM)

freeway with on-ramp city with traffic lights

⇐ Gipps IDMplus ⇒simulate ...
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IDM for bicycle traffic? Single-file bicycle traffic experiment

simulate ...
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Simulating single-file bicycle traffic with the IDM

lbike = 1.7m, v0 = 4m/s, T = 0.6 s,
s0 = 0.4m, a = 0.8m/s2, b = 1.5m/s2
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9.4 Derivatives of the Intelligent Driver Model

For a realistic driving feeling or for use as the core of an ACC controller, the IDM still has
several deficiencies:

I When reaching the desired speed, the steady-state time gap

T =
se(v)− s0

v
=

T√
1− (v/v0)4

becomes significantly larger than T leading to a somewhat unrealistic platoon
behaviour in the city with traffic lights situation.

I The IDM reacts too sensitively if the gap is too low, even if there is no real danger.
This happens regularly if the leader changes (active and passive lane changes)
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IDM with triangular fundamental diagram: IDM+

The time-gap deficiency can be solved by following modification:

dv

dt
= min

[
a
(
1− (v/v0)

4
)
, a
(
1− (s∗/s)2

)]
IDM+

I The acceleration function is no longer smooth but still continuous

I Instead of the continuous transition of the IDM, the IDM+ has two distinct regimes:
free acceleration (the first expression of the min function is relevant), and interacting
(the second expression matters)

I Steady-state time gap: dv
dt = 0⇒ if v < v0, the second expression in the

min-condition matters
⇒ s = s∗(v, v) = s0 + vT ⇒ constant time gap and triangular FD

I The intelligent braking strategy is not affected (see the following plots)
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IDM+ acceleration function

⇐ accIDM ⇒ accACC
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Factsheet of the Improved IDM (IDM+)

freeway with on-ramp city with traffic lights

⇐ IDM IIDM ⇒
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Another IDM with triangular fundamental diagram: IIDM

I Another possibility to obtain an IDM-like model with a triangular FD and the
intelligent brakingstrategy unaffected

I In contrast to the IIDM, the acceleration function is smooth

I However, this implies a more complicated formulation (not shown)
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Factsheet of the Improved IDM (IIDM)

freeway with on-ramp city with traffic lights

⇐ IDMplus ACC ⇒
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9.5 Models for Adaptive Cruise Control

I Besides a triangular FD (i.e., constant time gaps in the following regime), an ACC
model needs to be robust against changing leading objects caused, e.g., by active or
passive lane changes

I This is realized by replacing the worst-case heuristics of the IDM by a more realistic
“constant acceleration heuristics”: Human drivers also do not expect a full braking
maneuver to the stop out of the blue (and would not be able to handle it)

I In contrast, because the ACC model does only have insignificant reaction delays (all
IDM variants presented in this lecture have zero reaction time!), the ACC controller
could even handle this

I The actual model is not shown, just the results
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Response to a close cut-in maneuver at same speed: IDM

Lane-changing vehicle:
same speed 120 km/h as
the follower, cuts in leaving
a gap of 10 m

IDM responds too panically
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Response to a close cut-in maneuver at same speed: IIDM

Lane-changing vehicle:
same speed 120 km/h as
the follower, cuts in leaving
a gap of 10 m

IIDM response similarly
panically but has a bet-
ter following behaviour
afterwards
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Response to a close cut-in maneuver at same speed: ACC

Lane-changing vehicle:
same speed 120 km/h as
the follower, cuts in leaving
a gap of 10 m

The (IDM+-based) ACC
model has a cool immedi-
ate response and a plausi-
ble following behaviour af-
terwards
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Response to a critical cut-in maneuver: IDM

Lane-changing vehicle:
30 km/h slower than the
follower, cuts in leaving a
gap of just 10 m

IDM switches to emergency
mode which is right in this
situation
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Response to a critical cut-in maneuver: ACC model

Lane-changing vehicle:
30 km/h slower than the
follower, cuts in leaving a
gap of just 10 m

Also the ACC model looses
its coolness which is com-
pletely justified in this situ-
ation
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ACC model acceleration function

⇐ accIDMplus ⇒ accPT
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Factsheet of the ACC model
freeway with on-ramp city with traffic lights

⇐ IDM+ HDM ⇒
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9.6 Human-Driver Car-Following Models

In contrast to ACC controllers,
humans have ...

I Significant reaction times
⇒ state s(t− Tr), vl(t− Tr)

I Response thresholds (⇒ Wiedemann)

I Risk attitude (⇒ Prospect Theory)

I Correlated estimation errors in s, v,
and vl and general acceleration noise

I Temporal anticipation:
s(t+ Ta) = s(t) + Ta (vl(t)− v(t))

I Spatial anticipation: multi-anticipation
to next-nearest leaders

I Response to braking lights, winkers, ...
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Factsheet of the IDM-based Human Driver Model
freeway with on-ramp city with traffic lights

⇐ ACC model PT model ⇒
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Response thresholds:
Wiedemann trajectories in space-relative speed space

Base model in VISSIM
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CF models based on risk perception:
Prospect Theory of Kahneman and Twersky

Prospect theory is a variant of Expected Utility Theory (EUT):

I Given is a decision situation where, depending on the action a, a discrete set of
outcomes k ∈ K(a) with utilities Uk(a) can happen with probabilities Pk(a)

I The Homo Oeconomicus’ action a tries to maximize the expected utility

E(U) =
∑

k∈K(a)

Pk(a)Uk(a)
!

= max
a

I The actions a can be discrete such as accepting an offer or not, or continuous such
as deciding on an acceleration

I In Prospect Theory, both the probabilities and the utilities get a subjective bias and
the outcome weighted in this way is called a prospect:
I Small probabilities are overestimated (for probabilities > 0.5, the complement

probability is considered)
I At a certain framing reference, the sensitivity to utility changes is at its maximum
I Losses with respect to the reference are weighted more than wins: loss aversion
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probability is considered)
I At a certain framing reference, the sensitivity to utility changes is at its maximum
I Losses with respect to the reference are weighted more than wins: loss aversion
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Examples

1. Taking part in a lottery: a lot costs 1e, the probability of winning 95e (outcome 1)
is 1 %:
I Action “Y”: P1 = 0.01, U1 = 95− 1 = 94, P2 = 0.99, U2 = −1,

Action “N”: Only outcome k = 2 with certainty (P2 = 1, U2 = 0)
I EUT: E(“Y”)=0.01*94+0.99*(-1)=-0.05, E(“N”)=0 ⇒ decision “N”
I PT: The loss aversion and the reference effect shift the decision towards “N”, the

positively biased probability P1 towards it ⇒ depends on the person

2. Signing an insurance contract. The insurance costs 1e and protects from a damage
of 95e (outcome 1) occurring at a probabilty of 1 %
I Action “Y”: P1 = 0.01, U1 = −1, P2 = 0.99, U2 = −1,

Action “N”: P1 = 0.01, U1 = −95, P2 = 0.99, U2 = 0
I EUT: E(“Y”)=-1, E(“N”)=-0.95 ⇒ decision “N”
I PT: Here, the loss aversion and the subjective increase of P1 probably prevails over the

reference effect and the insurance is taken (“Y”)

3. Sitting in a vehicle and deciding on the acceleration (continuous-valued action) a.
Outcomes k = 1: “crash” and k = 2: “no crash” where P1(a) = 1− P2(a) increases
with a
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Formulation of a CF model based on Prospect Theory

General observations:

I The probability P1 of the outcome k = 1: “crash” increases with the acceleration a
(because of the future speed increasing and the future gaps decreasing with a)

I The probability P2 = 1− P1 of the outcome “no crash” decreases accordingly but its
utility U2 increases: “due to my higher future speed, I will need less time”

Assumptions of the presented PT model:

I Anticipation time horizon τa (e.g., τa = 5 s) for assessing the crash risk P1 � 1

I The leader’s speed is unchanged and the uncertainty of assessing the relative speed
∆v increases with the speed: ∆v̂ ∼ N(∆v, σ) with σ = αv (e.g., α = 0.2).

I The utility U2(a) with the slope U ′2(a) of the order of 1 (scaling of U) reflects the
reference at a = 0 and loss aversion

I The subjective crash utility U1 is a very negative constant (e.g., U1 = −105)

I Minimum of free and PT acceleration is taken
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Fundamental diagram and steady-state gap

Teff ≈ ατa
√

2 ln(−Pcrash)
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PT model acceleration function

⇐ accACC
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Factsheet of the PT model based on Kahneman and Twersky

freeway with on-ramp city with traffic lights

⇐ HDM
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