Lecture 08: Microscopic Models I

 Elementary Car-Following Models- 8.1 Difference between Micro and Macromodels
- 8.2 Types and Mathematical Forms
- 8.3 Car-Following Models
- 8.4 Optimal Velocity Model
-8.5 Full Velocity Difference Model
-8.6 Newell's Car-Following Model
- 8.7 Car-Following Cellular Automata

8.1 Difference between Micro and Macromodels

Microscopic:

describes the trajectories or FC time series

8.1 Difference between Micro and Macromodels

Local density $\rho(\mathrm{x}, \mathrm{t})[\mathrm{veh} / \mathrm{km}]$

Microscopic:

describes the trajectories or FC time series

Macroscopic:

describes the inverse of the local distance of the lines (density)

8.1 Difference between Micro and Macromodels

Microscopic:

describes the trajectories or FC time series

Macroscopic:

describes the inverse of the local distance of the lines (density) or the local gradient of the trajectories (local speed)

Characterisation of Microscopic Models

- Generally, microscopic models consider the smallest objects that make sense/play a role in the given context, e.g., molecules/atoms/elementary particles in physics or individual decision makers in economics.
- In traffic flow, this smallest object usually is the driver-vehicle unit () but it can also be a cyclist, a pedestrian, or others.
\rightarrow Microscopic models are more detailled than the macroscopic models discussed in the previous sections which locallv aggregate the microscopic quantities.

Characterisation of Microscopic Models

- Generally, microscopic models consider the smallest objects that make sense/play a role in the given context, e.g., molecules/atoms/elementary particles in physics or individual decision makers in economics.
- In traffic flow, this smallest object usually is the driver-vehicle unit (why vehicle and driver?) but it can also be a cyclist, a pedestrian, or others.
- Microscopic models are more detailled than the macroscopic models discussed in the previous sections which locally aggregate the microscopic quantities Microscopic models are less detailled than models for the vehicle dynamics ("submicroscopic models") treating aspects such as brake and engine control path slin or stability control

Characterisation of Microscopic Models

- Generally, microscopic models consider the smallest objects that make sense/play a role in the given context, e.g., molecules/atoms/elementary particles in physics or individual decision makers in economics.
- In traffic flow, this smallest object usually is the driver-vehicle unit (why vehicle and driver?) but it can also be a cyclist, a pedestrian, or others.
- Microscopic models are more detailled than the macroscopic models discussed in the previous sections which locally aggregate the microscopic quantities.
- Microscopic models are less detailled than models for the vehicle dynamics ("submicroscopic models") treating aspects such as brake and engine control path, slip, or stability control

Characterisation of Microscopic Models

- Generally, microscopic models consider the smallest objects that make sense/play a role in the given context, e.g., molecules/atoms/elementary particles in physics or individual decision makers in economics.
- In traffic flow, this smallest object usually is the driver-vehicle unit (why vehicle and driver?) but it can also be a cyclist, a pedestrian, or others.
- Microscopic models are more detailled than the macroscopic models discussed in the previous sections which locally aggregate the microscopic quantities.
- Microscopic models are less detailled than models for the vehicle dynamics ("submicroscopic models") treating aspects such as brake and engine control path, slip, or stability control

Where micromodels play out their advantages: heterogeneous traffic

Microscopic models play out their advantages when describing different driver-vehicle units, i.e., heterogeneous traffic. They are also called self-driven particles or agents (no stirring or shaking involved!).

There are four conceptual levels for heterogeneity that all can be tackled

Same model, same vehicle category, same driving style: Since drivers are no
marhines some arceleration noise is nlausihle

Where micromodels play out their advantages: heterogeneous traffic

Microscopic models play out their advantages when describing different driver-vehicle units, i.e., heterogeneous traffic. They are also called self-driven particles or agents (no stirring or shaking involved!).

There are four conceptual levels for heterogeneity that all can be tackled:

- Same model, same vehicle category, same driving style: Since drivers are no machines, some acceleration noise is plausible
\qquad styles (e.g. considerate or aggressive): every agent gets its individual parameter set drawn from a distribution

Where micromodels play out their advantages: heterogeneous traffic

Microscopic models play out their advantages when describing different driver-vehicle units, i.e., heterogeneous traffic. They are also called self-driven particles or agents (no stirring or shaking involved!).

There are four conceptual levels for heterogeneity that all can be tackled:

- Same model, same vehicle category, same driving style: Since drivers are no machines, some acceleration noise is plausible.

Where micromodels play out their advantages: heterogeneous traffic

Microscopic models play out their advantages when describing different driver-vehicle units, i.e., heterogeneous traffic. They are also called self-driven particles or agents (no stirring or shaking involved!).

There are four conceptual levels for heterogeneity that all can be tackled:

- Same model, same vehicle category, same driving style: Since drivers are no machines, some acceleration noise is plausible.
- Same model, same vehicle category (e.g., only cars or only trucks), different driving styles (e.g. considerate or aggressive): every agent gets its individual parameter set drawn from a distribution
- Same model, different vehicle categories, different styles: The agents of each category get their parameters from separate distributions Different models: Fundamentally different driving, cycles, tuctucs/motor-rickshaws, cars/trucks

Where micromodels play out their advantages: heterogeneous traffic

Microscopic models play out their advantages when describing different driver-vehicle units, i.e., heterogeneous traffic. They are also called self-driven particles or agents (no stirring or shaking involved!).

There are four conceptual levels for heterogeneity that all can be tackled:

- Same model, same vehicle category, same driving style: Since drivers are no machines, some acceleration noise is plausible.
- Same model, same vehicle category (e.g., only cars or only trucks), different driving styles (e.g. considerate or aggressive): every agent gets its individual parameter set drawn from a distribution
- Same model, different vehicle categories, different styles: The agents of each category get their parameters from separate distributions
$>$ Different models: Fundamentally different agents such as human vs. autonomous driving, cycles, tuctucs/motor-rickshaws, cars/trucks

Where micromodels play out their advantages: heterogeneous traffic

Microscopic models play out their advantages when describing different driver-vehicle units, i.e., heterogeneous traffic. They are also called self-driven particles or agents (no stirring or shaking involved!).

There are four conceptual levels for heterogeneity that all can be tackled:

- Same model, same vehicle category, same driving style: Since drivers are no machines, some acceleration noise is plausible.
- Same model, same vehicle category (e.g., only cars or only trucks), different driving styles (e.g. considerate or aggressive): every agent gets its individual parameter set drawn from a distribution
- Same model, different vehicle categories, different styles: The agents of each category get their parameters from separate distributions
- Different models: Fundamentally different agents such as human vs. autonomous driving, cycles, tuctucs/motor-rickshaws, cars/trucks

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
- Operative level: accelerating, braking, steering
- Tactical levels: lane changing, entering a priority road and other discrete-choice tasks - Strategic level: route choice

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
- Operative level: accelerating, braking, steering
- Tactical levels: lane changing, entering a priority road and other discrete-choice tasks

[^0]$>$ Hence, their are different model categories

- Car followimer (CF) models or more monerally models for the longitudinal dynamics are the most important representatives of microscopic traffic flow models

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
- Operative level: accelerating, braking, steering
- Tactical levels: lane changing, entering a priority road and other discrete-choice tasks
- Strategic level: route choice
\rightarrow Hence, their are different model categories:
- Car-following (CF) models or more generally models for the longitudinal dynamics are the most important representatives of microscopic traffic flow models
- lane-changing models or integrated models (combining longitudinal and lateral dynamics)

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
- Operative level: accelerating, braking, steering
- Tactical levels: lane changing, entering a priority road and other discrete-choice tasks
- Strategic level: route choice
- Hence, their are different model categories:
- Car-following (CF) models or more generally models for the longitudinal dynamics are the most important representatives of microscopic traffic flow models
\rightarrow lane-changing models or integrated models (combining longitudinal and lateral dynamics)
- non-lane-based models, e.g., for mixed traffic (India), cross-country skiing and running events,

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
- Operative level: accelerating, braking, steering
- Tactical levels: lane changing, entering a priority road and other discrete-choice tasks
- Strategic level: route choice
- Hence, their are different model categories:
- Car-following (CF) models or more generally models for the longitudinal dynamics are the most important representatives of microscopic traffic flow models
- lane-changing models or integrated models (combining longitudinal and lateral dynamics)
- non-lane-based models, e.g., for mixed traffic (India), cross-country skiing and running events,
- general discrete-choice models for situations such as entering or crossing a road stopping behind a traffic light

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
- Operative level: accelerating, braking, steering
- Tactical levels: lane changing, entering a priority road and other discrete-choice tasks
- Strategic level: route choice
- Hence, their are different model categories:
- Car-following (CF) models or more generally models for the longitudinal dynamics are the most important representatives of microscopic traffic flow models
- lane-changing models or integrated models (combining longitudinal and lateral dynamics)
- non-lane-based models, e.g., for mixed traffic (India), cross-country skiing and running events,
- general discrete-choice models for situations such as entering or crossing a road, stopping behind a traffic light

[^1]
8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
- Operative level: accelerating, braking, steering
- Tactical levels: lane changing, entering a priority road and other discrete-choice tasks
- Strategic level: route choice
- Hence, their are different model categories:
- Car-following (CF) models or more generally models for the longitudinal dynamics are the most important representatives of microscopic traffic flow models
- lane-changing models or integrated models (combining longitudinal and lateral dynamics)
- non-lane-based models, e.g., for mixed traffic (India), cross-country skiing and running events,
- general discrete-choice models for situations such as entering or crossing a road, stopping behind a traffic light
\rightarrow higher-level micromodels for whole routes: multi-agent models

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
- Operative level: accelerating, braking, steering
- Tactical levels: lane changing, entering a priority road and other discrete-choice tasks
- Strategic level: route choice
- Hence, their are different model categories:
- Car-following (CF) models or more generally models for the longitudinal dynamics are the most important representatives of microscopic traffic flow models
- lane-changing models or integrated models (combining longitudinal and lateral dynamics)
- non-lane-based models, e.g., for mixed traffic (India), cross-country skiing and running events,
- general discrete-choice models for situations such as entering or crossing a road, stopping behind a traffic light
- higher-level micromodels for whole routes: multi-agent models

Mathematical forms

- Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

Mathematical forms

- Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f_{i}\left(x_{i}, x_{i-1}, v_{i}, v_{i-1}, . .\right)
$$

Mathematical forms

- Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f_{i}\left(x_{i}, x_{i-1}, v_{i}, v_{i-1}, . .\right)
$$

Why $f_{i}($.$) instead of f($.$) ? Different driving styles or even models$ Discrete update timesteps: iterated maps

Mathematical forms

- Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f_{i}\left(x_{i}, x_{i-1}, v_{i}, v_{i-1}, . .\right)
$$

Why $f_{i}($.$) instead of f($.$) ? Different driving styles or even models$

- Discrete update timesteps: iterated maps
- Space, time, and state are all discrete: cellular automata(CA)

Mathematical forms

- Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f_{i}\left(x_{i}, x_{i-1}, v_{i}, v_{i-1}, . .\right)
$$

Why $f_{i}($.$) instead of f($.$) ? Different driving styles or even models$

- Discrete update timesteps: iterated maps

$$
x_{i}(t+\Delta t)=f_{i}^{x}\left(x_{i}(t), v_{i}(t)\right), \quad v_{i}(t+\Delta t)=f_{i}^{v}\left(x_{i}(t), x_{i-1}(t), v_{i}(t), v_{i-1}(t), . .\right)
$$

- Space, time, and state are all discrete: cellular automata(CA)

Mathematical forms

- Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f_{i}\left(x_{i}, x_{i-1}, v_{i}, v_{i-1}, . .\right)
$$

Why $f_{i}($.$) instead of f($.$) ? Different driving styles or even models$

- Discrete update timesteps: iterated maps

$$
x_{i}(t+\Delta t)=f_{i}^{x}\left(x_{i}(t), v_{i}(t)\right), \quad v_{i}(t+\Delta t)=f_{i}^{v}\left(x_{i}(t), x_{i-1}(t), v_{i}(t), v_{i-1}(t), . .\right)
$$

- Space, time, and state are all discrete: cellular automata(CA)

$$
\boldsymbol{v}(t+1)=f^{\mathrm{CA}}(\boldsymbol{v}(t)), \quad v_{k}= \begin{cases}-1 & \text { cell } k \text { empty } \\ 0,1, \ldots & \text { cell } k \text { occupied } \\ & \text { speed } v_{k}^{\text {phys }}=v_{k} \Delta x / \Delta t\end{cases}
$$

Mathematical forms

- Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f_{i}\left(x_{i}, x_{i-1}, v_{i}, v_{i-1}, . .\right)
$$

Why $f_{i}($.$) instead of f($.$) ? Different driving styles or even models$

- Discrete update timesteps: iterated maps

$$
x_{i}(t+\Delta t)=f_{i}^{x}\left(x_{i}(t), v_{i}(t)\right), \quad v_{i}(t+\Delta t)=f_{i}^{v}\left(x_{i}(t), x_{i-1}(t), v_{i}(t), v_{i-1}(t), . .\right)
$$

- Space, time, and state are all discrete: cellular automata(CA)

$$
\boldsymbol{v}(t+1)=f^{\mathrm{CA}}(\boldsymbol{v}(t)), \quad v_{k}= \begin{cases}-1 & \text { cell } k \text { empty } \\ 0,1, \ldots & \text { cell } k \text { occupied } \\ & \text { speed } v_{k}^{\text {phys }}=v_{k} \Delta x / \Delta t\end{cases}
$$

Mathematical forms

- Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f_{i}\left(x_{i}, x_{i-1}, v_{i}, v_{i-1}, . .\right)
$$

Why $f_{i}($.$) instead of f($.$) ? Different driving styles or even models$

- Discrete update timesteps: iterated maps

$$
x_{i}(t+\Delta t)=f_{i}^{x}\left(x_{i}(t), v_{i}(t)\right), \quad v_{i}(t+\Delta t)=f_{i}^{v}\left(x_{i}(t), x_{i-1}(t), v_{i}(t), v_{i-1}(t), . .\right)
$$

- Space, time, and state are all discrete: cellular automata(CA)

$$
\boldsymbol{v}(t+1)=\boldsymbol{f}^{\mathrm{CA}}(\boldsymbol{v}(t)), \quad v_{k}= \begin{cases}-1 & \text { cell } k \text { empty } \\ 0,1, \ldots & \text { cell } k \text { occupied } \\ & \text { speed } v_{k}^{\text {phys }}=v_{k} \Delta x / \Delta t\end{cases}
$$

? Give the frame of reference (Euler or Lagrange) of each mathematical form CA: Euler; the others: Lagrange

8.3 Car-Following Models

Most car-following models consider just the immediate leader, exactly like an adaptive-cruise control (ACC) system:
\Rightarrow Independent variables: speed v_{i}, gap $s_{i}=x_{i-1}-x_{i}-l_{i-1}$, and leading speed $v_{i-1}:=v_{l}$
\rightarrow Position x_{i} : front bumper of vehicle i, increasing in driving direction

8.3 Car-Following Models

Most car-following models consider just the immediate leader, exactly like an adaptive-cruise control (ACC) system:

- Independent variables: speed v_{i}, gap $s_{i}=x_{i-1}-x_{i}-l_{i-1}$, and leading speed $v_{i-1}:=v_{l}$
\rightarrow Position x_{i} : front bumper of vehicle i, increasing in driving direction
- Indices i as in a race: the first becomes Number 1, so

8.3 Car-Following Models

Most car-following models consider just the immediate leader, exactly like an adaptive-cruise control (ACC) system:

- Independent variables: speed v_{i}, gap $s_{i}=x_{i-1}-x_{i}-l_{i-1}$, and leading speed $v_{i-1}:=v_{l}$
- Position x_{i} : front bumper of vehicle i, increasing in driving direction
\rightarrow Indices i as in a race: the first becomes Number 1 , so $x_{i-1}>x_{1}$

8.3 Car-Following Models

Most car-following models consider just the immediate leader, exactly like an adaptive-cruise control (ACC) system:

- Independent variables: speed v_{i}, gap $s_{i}=x_{i-1}-x_{i}-l_{i-1}$, and leading speed $v_{i-1}:=v_{l}$
- Position x_{i} : front bumper of vehicle i, increasing in driving direction
- Indices i as in a race: the first becomes Number 1 , so $x_{i-1}>x_{i}$

Clarification: headways and gaps

- Headways always denote differences including the vehicle's occupancy time or length:

The time headway or simple headway $\Delta t_{i}=t_{i}-t_{i-1}$ gives the time interval between
consecutive vehicles passing a fixed spot
The distance headway $d_{i}=x_{i-1}-x_{i}$ gives the distance of the vehicle fronts between
leader and follower at a fixed time

Clarification: headways and gaps

- Headways always denote differences including the vehicle's occupancy time or length:
- The time headway or simple headway $\Delta t_{i}=t_{i}-t_{i-1}$ gives the time interval between consecutive vehicles passing a fixed spot
gives the distance of the vehicle fronts between leader and follower at a fixed time

Clarification: headways and gaps

- Headways always denote differences including the vehicle's occupancy time or length:
- The time headway or simple headway $\Delta t_{i}=t_{i}-t_{i-1}$ gives the time interval between consecutive vehicles passing a fixed spot
- The distance headway $d_{i}=x_{i-1}-x_{i}$ gives the distance of the vehicle fronts between leader and follower at a fixed time
- Gaps always denote the bumper-to-bumper differences between leader and follower at a fixed spot. It is the time headway minus the leader's occupancy time

Clarification: headways and gaps

- Headways always denote differences including the vehicle's occupancy time or length:
- The time headway or simple headway $\Delta t_{i}=t_{i}-t_{i-1}$ gives the time interval between consecutive vehicles passing a fixed spot
- The distance headway $d_{i}=x_{i-1}-x_{i}$ gives the distance of the vehicle fronts between leader and follower at a fixed time
- Gaps always denote the bumper-to-bumper differences

Clarification: headways and gaps

- Headways always denote differences including the vehicle's occupancy time or length:
- The time headway or simple headway $\Delta t_{i}=t_{i}-t_{i-1}$ gives the time interval between consecutive vehicles passing a fixed spot
- The distance headway $d_{i}=x_{i-1}-x_{i}$ gives the distance of the vehicle fronts between leader and follower at a fixed time
- Gaps always denote the bumper-to-bumper differences
- The time gap $T_{i}=t_{i}-t_{i-1}-l_{i-1} / v_{i-1}$ gives the time interval of no occupation between leader and follower at a fixed spot. It is the time headway minus the leader's occupancy time
\Rightarrow The distance gap or simply gap $s_{i}=x_{i-1}-x_{i}-l_{i-1}$ gives the bumper to bumper gap, i.e., distance headway minus the leader's vehicle length

Clarification: headways and gaps

- Headways always denote differences including the vehicle's occupancy time or length:
- The time headway or simple headway $\Delta t_{i}=t_{i}-t_{i-1}$ gives the time interval between consecutive vehicles passing a fixed spot
- The distance headway $d_{i}=x_{i-1}-x_{i}$ gives the distance of the vehicle fronts between leader and follower at a fixed time
- Gaps always denote the bumper-to-bumper differences
- The time gap $T_{i}=t_{i}-t_{i-1}-l_{i-1} / v_{i-1}$ gives the time interval of no occupation between leader and follower at a fixed spot. It is the time headway minus the leader's occupancy time
- The distance gap or simply gap $s_{i}=x_{i-1}-x_{i}-l_{i-1}$ gives the bumper to bumper gap, i.e., distance headway minus the leader's vehicle length
\Rightarrow The time to collision $T_{i}^{c}=s /\left(v_{i}-v_{i-1}\right)$ gives exactly that if $v_{i}>v_{i-1}$ and there are no accelerations.

Clarification: headways and gaps

- Headways always denote differences including the vehicle's occupancy time or length:
- The time headway or simple headway $\Delta t_{i}=t_{i}-t_{i-1}$ gives the time interval between consecutive vehicles passing a fixed spot
- The distance headway $d_{i}=x_{i-1}-x_{i}$ gives the distance of the vehicle fronts between leader and follower at a fixed time
- Gaps always denote the bumper-to-bumper differences
- The time gap $T_{i}=t_{i}-t_{i-1}-l_{i-1} / v_{i-1}$ gives the time interval of no occupation between leader and follower at a fixed spot. It is the time headway minus the leader's occupancy time
- The distance gap or simply gap $s_{i}=x_{i-1}-x_{i}-l_{i-1}$ gives the bumper to bumper gap, i.e., distance headway minus the leader's vehicle length
- The time to collision $T_{i}^{c}=s /\left(v_{i}-v_{i-1}\right)$ gives exactly that if $v_{i}>v_{i-1}$ and there are no accelerations.

Model plausibility and completeness

A (generalized) car-following model is complete if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

Model plausibility and completeness

A (generalized) car-following model is complete if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

Model plausibility and completeness

> A (generalized) car-following model is complete if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

- realistic acceleration profile
- existence of a desired speed v_{0}

Model plausibility and completeness

> A (generalized) car-following model is complete if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

Free flow:

- realistic acceleration profile
- existence of a desired speed v_{0}

Model plausibility and completeness

A (generalized) car-following model is complete if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

Free flow:

- realistic acceleration profile
- existence of a desired speed v_{0}

- existence of a minimum gap

Model plausibility and completeness

A (generalized) car-following model is complete if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

Free flow:

- realistic acceleration profile
- existence of a desired speed v_{0}

- existence of a minimum gap
- following a leader at a plausible time gap

- transition to the free-flow state for sufficiently large gaps

Model plausibility and completeness

A (generalized) car-following model is complete if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

Free flow:

- realistic acceleration profile
- existence of a desired speed v_{0}

Steady-state

- existence of a minimum gap
- following a leader at a
 plausible time gap
- transition to the free-flow state for sufficiently large gaps

Model plausibility and completeness

A (generalized) car-following model is complete if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

Free flow:

- realistic acceleration profile
- existence of a desired speed v_{0}

Steady-state:

- existence of a minimum gap
- following a leader at a
 plausible time gap
- transition to the free-flow state for sufficiently large gaps

Model plausibility and completeness II

when closing in, regular transition to a car-following
 situation
 when approaching a stopped obstacle (vehicle queue
 or red traffic light), regular deceleration to a stop at

some minimum gap

Model plausibility and completeness II

- when closing in, regular transition to a car-following situation

when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
handling of a target change (cutting in and out of
leaders)

Model plausibility and completeness II

dvnamic situations

- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
> handling of a target change (cutting in and out of

leaders)
- handling of emergency situations (transition to closing in)

Model plausibility and completeness II

dynamic situations

- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
- handling of a target change (cutting in and out of leaders)
$>$ handling of emergency situations (transition to closing in)

Model plausibility and completeness II

dynamic situations:

- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
- handling of a target change (cutting in and out of leaders)
- handling of emergency situations (transition to closing in)

Model plausibility and completeness II

dynamic situations:

- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
- handling of a target change (cutting in and out of leaders)
- handling of emergency situations (transition to closing in)
traffic breakdown at situations where it is observed
- traffic flow instabilities

Model plausibility and completeness II

dynamic situations:

- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
- handling of a target change (cutting in and out of leaders)
- handling of emergency situations (transition to closing in)

- traffic breakdown at situations where it is observed
- traffic flow instabilities
- formation of traffic waves with the right properties

Model plausibility and completeness II

dynamic situations:

- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
- handling of a target change (cutting in and out of leaders)
- handling of emergency situations (transition to closing in)

- traffic breakdown at situations where it is observed
- traffic flow instabilities
- formation of traffic waves with the right properties

- Producing the right flow-density data from virtual stationary detectors

Model plausibility and completeness II

dynamic situations:

- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
- handling of a target change (cutting in and out of leaders)
- handling of emergency situations (transition to closing in)

collective phenomena

- traffic breakdown at situations where it is observed
- traffic flow instabilities
- formation of traffic waves with the right properties

Model plausibility and completeness II

dynamic situations:

- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
- handling of a target change (cutting in and out of leaders)
- handling of emergency situations (transition to closing in)
collective phenomena:
- traffic breakdown at situations where it is observed
- traffic flow instabilities
- formation of traffic waves with the right properties

- Producing the right flow-density data from virtual stationary detectors

Example of a complete model: IDM

Test 1: freeway with on-ramp: OK

Example of a complete model: IDM

Test 1: freeway with on-ramp: OK
Test 2: traffic lights: OK

Example of an incomplete model: FVDM

Test 1: freeway with on-ramp: OK

Example of an incomplete model: FVDM

Test 1: freeway with on-ramp: OK

Test 2: traffic lights:
transition to free flow fails $\left(v_{0}=54 \mathrm{~km} / \mathrm{h}\right)$

Plausibility criteria: the acceleration function

Formulate both ODE and iterated map models such that $f($.$) stands for the acceleration$ function:

Plausibility criteria: the acceleration function

Formulate both ODE and iterated map models such that $f($.$) stands for the acceleration$ function:

- ODE models:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f\left(s_{i}, v_{i}, v_{i-1}\right) \equiv f\left(s, v, v_{l}\right)
$$

- Iterated-map models:

Plausibility criteria: the acceleration function

Formulate both ODE and iterated map models such that $f($.$) stands for the acceleration$ function:

- ODE models:

$$
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=v_{i}, \quad \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}=f\left(s_{i}, v_{i}, v_{i-1}\right) \equiv f\left(s, v, v_{l}\right)
$$

- Iterated-map models:

$$
\begin{aligned}
v_{i}(t+\Delta t) & =v_{i}(t)+f\left(s_{i}(t), v_{i}(t), v_{i-1}(t)\right) \Delta t \\
x_{i}(t+\Delta t) & =x_{i}(t)+\frac{1}{2}\left[v_{i}(t)+v_{i}(t+\Delta t)\right] \Delta t
\end{aligned}
$$

Plausibility criteria: the IDM acceleration function

Plausibility criteria: the IDM acceleration function

Plausibility criteria: the IDM acceleration function

Plausibility criteria: the IDM acceleration function

Plausibility criteria: the IDMplus acceleration function

Plausibility criteria I

A necessary condition for completeness is that the following plausibility conditions are satisfied:
(1) Dependence of the acceleration on the own speed and existence of a desired speed v_{0} :

(2) Dependence on the gap with limiting case of no interaction:

Dependence on the leader's speed:

Plausibility criteria I

A necessary condition for completeness is that the following plausibility conditions are satisfied:
(1) Dependence of the acceleration on the own speed and existence of a desired speed v_{0} :

$$
\frac{\partial f\left(s, v, v_{l}\right)}{\partial v}<0, \quad \lim _{s \rightarrow \infty} f\left(s, v_{0}, v_{l}\right)=0
$$

(2) Dependence on the gap with limiting case of no interaction:
(3) Dependence on the leader's speed:

Plausibility criteria I

A necessary condition for completeness is that the following plausibility conditions are satisfied:
(1) Dependence of the acceleration on the own speed and existence of a desired speed v_{0} :

$$
\frac{\partial f\left(s, v, v_{l}\right)}{\partial v}<0, \quad \lim _{s \rightarrow \infty} f\left(s, v_{0}, v_{l}\right)=0
$$

(2) Dependence on the gap with limiting case of no interaction:

$$
\frac{\partial f\left(s, v, v_{l}\right)}{\partial s} \geq 0, \quad \lim _{s \rightarrow \infty} \frac{\partial f\left(s, v, v_{l}\right)}{\partial s}=0
$$

(3) Dependence on the leader's speed:

Plausibility criteria I

A necessary condition for completeness is that the following plausibility conditions are satisfied:
(1) Dependence of the acceleration on the own speed and existence of a desired speed v_{0} :

$$
\frac{\partial f\left(s, v, v_{l}\right)}{\partial v}<0, \quad \lim _{s \rightarrow \infty} f\left(s, v_{0}, v_{l}\right)=0
$$

(2) Dependence on the gap with limiting case of no interaction:

$$
\frac{\partial f\left(s, v, v_{l}\right)}{\partial s} \geq 0, \quad \lim _{s \rightarrow \infty} \frac{\partial f\left(s, v, v_{l}\right)}{\partial s}=0
$$

(3) Dependence on the leader's speed:

$$
\frac{\partial f\left(s, v, v_{l}\right)}{\partial v_{l}} \geq 0, \quad \lim _{s \rightarrow \infty} \frac{\partial f\left(s, v, v_{l}\right)}{\partial v_{l}}=0, \quad\left|\frac{\partial f}{\partial v_{l}}\right| \leq\left|\frac{\partial f}{\partial v}\right|
$$

Plausibility criteria II: Steady-state relation

The steady-state speed $v_{e}(s)$ defined $f\left(s, v_{e}(s), v_{e}(s)\right)=0$ satisfies $v_{e}\left(s_{0}\right)=0$ for some $s_{0}>0$

Plausibility criteria II: Steady-state relation

Plausibility criteria II: Steady-state relation

Express $v_{e}^{\prime}(s)$ in terms of $\frac{\partial f}{\partial s}, \frac{\partial f}{\partial v}$, and $\frac{\partial f}{\partial v_{l}}$ and show that this condition follows from (1) and (2)

Plausibility criteria II: Steady-state relation

IDM

Express $v_{e}^{\prime}(s)$ in terms of $\frac{\partial f}{\partial s}, \frac{\partial f}{\partial v}$, and $\frac{\partial f}{\partial v_{l}}$ and show that this condition follows from (1) and (2) $f\left(s_{e}, v, v\right)=0$

Plausibility criteria II: Steady-state relation

Express $v_{e}^{\prime}(s)$ in terms of $\frac{\partial f}{\partial s}, \frac{\partial f}{\partial v}$, and $\frac{\partial f}{\partial v_{l}}$ and show that this condition follows from (1) and (2) $f\left(s_{e}, v, v\right)=0$

$$
\Rightarrow 0=\mathrm{d} f
$$

Plausibility criteria II: Steady-state relation

Express $v_{e}^{\prime}(s)$ in terms of $\frac{\partial f}{\partial s}, \frac{\partial f}{\partial v}$, and $\frac{\partial f}{\partial v_{l}}$ and show that this condition follows from (1) and (2) $f\left(s_{e}, v, v\right)=0$
$\Rightarrow 0=\mathrm{d} f$

$$
=\frac{\partial f}{\partial s} \mathrm{~d} s+\frac{\partial f}{\partial v} \mathrm{~d} v+\frac{\partial f}{\partial v_{l}} \mathrm{~d} v
$$

Plausibility criteria II: Steady-state relation

steady-state speed-gap relation and existence of a minimum gap:

Plausibility criteria II: Steady-state relation

Steady-state speed-gap relation and existence of a minimum gap:
The steady-state speed $v_{e}(s)$ defined by $f\left(s, v_{e}(s), v_{e}(s)\right)=0$ satisfies $v_{e}^{\prime}(s) \geq 0, \quad \lim v_{e}(s)=v_{0}, v_{e}\left(s_{0}\right)=0$ for some $s_{0}>0$

Express $v_{e}^{\prime}(s)$ in terms of $\frac{\partial f}{\partial s}, \frac{\partial f}{\partial v}$, and $\frac{\partial f}{\partial v_{l}}$ and show that this condition follows from (1) and (2) $f\left(s_{e}, v, v\right)=0$

$$
\Rightarrow 0=\mathrm{d} f
$$

$$
=\frac{\partial f}{\partial s} \mathrm{~d} s+\frac{\partial f}{\partial v} \mathrm{~d} v+\frac{\partial f}{\partial v_{l}} \mathrm{~d} v
$$

$$
=\left(\frac{\partial f}{\partial s}+\frac{\partial f}{\partial v} v_{e}^{\prime}(s)+\frac{\partial f}{\partial v_{l}} v_{e}^{\prime}(s)\right) \mathrm{d} s
$$

$$
\Rightarrow v_{e}^{\prime}(s)=-\frac{\partial f}{\partial s} /\left(\frac{\partial f}{\partial v}+\frac{\partial f}{\partial v_{l}}\right)
$$

Plausibility criteria II: Steady-state relation

Steady-state speed-gap relation and existence of a minimum gap:
The steady-state speed $v_{e}(s)$ defined by $f\left(s, v_{e}(s), v_{e}(s)\right)=0$ satisfies
$v_{e}^{\prime}(s) \geq 0, \lim _{s \rightarrow \infty} v_{e}(s)=v_{0}, v_{e}\left(s_{0}\right)=0$ for some $s_{0}>0$
Express $v_{e}^{\prime}(s)$ in terms of $\frac{\partial f}{\partial s}, \frac{\partial f}{\partial v}$, and $\frac{\partial f}{\partial v_{l}}$ and show that this condition follows from (1) and (2) $f\left(s_{e}, v, v\right)=0$

$$
\begin{aligned}
& \Rightarrow 0=\mathrm{d} f \\
&=\frac{\partial f}{\partial s} \mathrm{~d} s+\frac{\partial f}{\partial v} \mathrm{~d} v+\frac{\partial f}{\partial v_{l}} \mathrm{~d} v \\
&=\left(\frac{\partial f}{\partial s}+\frac{\partial f}{\partial v} v_{e}^{\prime}(s)+\frac{\partial f}{\partial v_{l}} v_{e}^{\prime}(s)\right) \mathrm{d} s \\
& \Rightarrow v_{e}^{\prime}(s)=-\frac{\partial f}{\partial s} /\left(\frac{\partial f}{\partial v}+\frac{\partial f}{\partial v_{l}}\right) \\
& \geq 0 \text { since } \frac{\partial f}{\partial s} \geq 0, \frac{\partial f}{\partial v}<0, \text { and }\left|\frac{\partial f}{\partial v_{l}}\right| \leq\left|\frac{\partial f}{\partial v}\right| \\
& \text { and } v_{e}(s \rightarrow \infty)=v_{0} \text { from (1) }
\end{aligned}
$$

Some Examples of Elementary Car-Following Models

- Not really useful for actually simulating traffic flow
- but very good for showing the basic principles,
- also serve as basis for the more sophisticated ones
8.4 Optimal Velocity Model
8.5 Full Velocity Difference Model
8.6 Newell's Car-Following Model
8.7 Car-Following Cellular Automata

8.4 Optimal Velocity Model (OVM)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{\mathrm{opt}}(s)-v}{\tau} \quad \text { Optimal Velocity Model }
$$

Whole model class parameterized by the optimal-velocity function $v_{\text {opt }}(s)$, e.g., - Original OVM function by Bando et al: - OVM function corresponding to the triangular FD:

8.4 Optimal Velocity Model (OVM)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{\mathrm{opt}}(s)-v}{\tau} \quad \text { Optimal Velocity Model }
$$

Whole model class parameterized by the optimal-velocity function $v_{\text {opt }}(s)$, e.g.,

- Original OVM function by Bando et al:

$$
v_{\text {opt }}(s)=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}
$$

- OVM function corresponding to the triangular FD

8.4 Optimal Velocity Model (OVM)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{\mathrm{opt}}(s)-v}{\tau} \quad \text { Optimal Velocity Model }
$$

Whole model class parameterized by the optimal-velocity function $v_{\text {opt }}(s)$, e.g.,

- Original OVM function by Bando et al:

$$
v_{\text {opt }}(s)=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}
$$

- OVM function corresponding to the triangular FD:

$$
v_{\mathrm{opt}}(s)=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]
$$

OV functions

OV functions

Properties of the Optimal Velocity Model (OVM)

- The homogeneous-steady-state speed $v_{e}(s)$ is given by the OV function Technically, the model marginally satisfies all plausibility conditions (no sensitivity to the leader's speed) but results in unrealistic accelerations, or crashes, or both Besides the parameters of the OV function, the OVM has the speed relaxation time - as additional parameter: - The more responsive the driver, the lower τ - the higher τ, the more instabilities

Properties of the Optimal Velocity Model (OVM)

- The homogeneous-steady-state speed $v_{e}(s)$ is given by the OV function
- Technically, the model marginally satisfies all plausibility conditions (no sensitivity to the leader's speed) but results in unrealistic accelerations, or crashes, or both

Properties of the Optimal Velocity Model (OVM)

- The homogeneous-steady-state speed $v_{e}(s)$ is given by the OV function
- Technically, the model marginally satisfies all plausibility conditions (no sensitivity to the leader's speed) but results in unrealistic accelerations, or crashes, or both
- Besides the parameters of the OV function, the OVM has the speed relaxation time τ as additional parameter:
- The more responsive the driver, the lower τ,
- the higher τ, the more instabilities

Properties of the Optimal Velocity Model (OVM)

- The homogeneous-steady-state speed $v_{e}(s)$ is given by the OV function
- Technically, the model marginally satisfies all plausibility conditions (no sensitivity to the leader's speed) but results in unrealistic accelerations, or crashes, or both
- Besides the parameters of the OV function, the OVM has the speed relaxation time τ as additional parameter:
- The more responsive the driver, the lower τ,
- the higher τ, the more instabilities

Parameter	Typical Value Highway	Typical Value City Traffic
Adaptation time τ	0.65 s	0.65 s
Desired speed v_{0}	$120 \mathrm{~km} / \mathrm{h}$	$54 \mathrm{~km} / \mathrm{h}$
Transition width Δs (Bando FD)	15 m	8 m
Form factor β (Bando FD)	1.5	1.5
Time gap T (triangular FD)	1.4 s	1.2 s
Minimum distance gap s_{0} (triangular FD)	3 m	2 m

Factsheet of the Optimal Velocity Model (OVM)

Factsheet of the Optimal Velocity Model (OVM)

city with traffic lights extreme accelerations!

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\text {triang }}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\text {opt }}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\mathrm{opt}}(s)$

Check the plausibility conditions

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\text {opt }}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\mathrm{triang}}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\text {opt }}(s)$

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\text {opt }}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\text {triang }}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\text {opt }}(s)$
? Check the plausibility conditions

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\mathrm{triang}}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\text {opt }}(s)$
? Check the plausibility conditions
! (1) $\frac{\mathrm{d} f}{\mathrm{~d} v}=-1 / \tau<0$ OK

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\mathrm{triang}}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\text {opt }}(s)$
? Check the plausibility conditions
! (1) $\frac{\mathrm{d} f}{\mathrm{~d} v}=-1 / \tau<0$ OK
(2) $\frac{\mathrm{d} f}{\mathrm{~d} s}=v_{e}^{\prime}(s) / \tau \geq 0$ if $v_{e}^{\prime}(s) \geq 0 \mathrm{OK}$

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\mathrm{triang}}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\text {opt }}(s)$
? Check the plausibility conditions
! (1) $\frac{\mathrm{d} f}{\mathrm{~d} v}=-1 / \tau<0$ OK
(2) $\frac{\mathrm{d} f}{\mathrm{~d} s}=v_{e}^{\prime}(s) / \tau \geq 0$ if $v_{e}^{\prime}(s) \geq 0 \mathrm{OK}$
(3) $\frac{\mathrm{d} f}{\mathrm{~d} v_{l}}=0$ marginally OK

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\text {triang }}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\text {opt }}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\mathrm{opt}}(s)$
? Check the plausibility conditions
! (1) $\frac{\mathrm{d} f}{\mathrm{~d} v}=-1 / \tau<0 \mathrm{OK}$
(2) $\frac{\mathrm{d} f}{\mathrm{~d} s}=v_{e}^{\prime}(s) / \tau \geq 0$ if $v_{e}^{\prime}(s) \geq 0 \mathrm{OK}$
(3) $\frac{d f}{d v_{l}}=0$ marginally OK
(4a) Bando OV function: $v_{\text {opt }}^{\prime}(s) \geq 0$ since $\tanh () \geq 0,. v_{\text {opt }}(s \rightarrow \infty)=v_{0}, v_{\text {opt }}(0)=0$ (OK) (4b) triangular OV functior
show that the "triangular" OV function in fact leads to the triangular FD

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\text {triang }}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\text {opt }}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\mathrm{opt}}(s)$
? Check the plausibility conditions
! (1) $\frac{\mathrm{d} f}{\mathrm{~d} v}=-1 / \tau<0 \mathrm{OK}$
(2) $\frac{\mathrm{d} f}{\mathrm{~d} s}=v_{e}^{\prime}(s) / \tau \geq 0$ if $v_{e}^{\prime}(s) \geq 0 \mathrm{OK}$
(3) $\frac{\mathrm{d} f}{\mathrm{~d} v_{l}}=0$ marginally OK
(4a) Bando OV function: $v_{\text {opt }}^{\prime}(s) \geq 0$ since $\tanh () \geq 0,. v_{\text {opt }}(s \rightarrow \infty)=v_{0}, v_{\text {opt }}(0)=0$ (OK) (4b) triangular OV function: $v_{\text {opt }}^{\prime}(s)=1 / T$ or $=0, v_{\text {opt }}(s \rightarrow \infty)=v_{0}, v_{\text {opt }}\left(s_{0}\right)=0$ OK
show that the "triangular" OV function in fact leads to the triangular FD
\qquad
\qquad

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\text {triang }}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\text {opt }}(s)$
? Check the plausibility conditions
! (1) $\frac{\mathrm{d} f}{\mathrm{~d} v}=-1 / \tau<0 \mathrm{OK}$
(2) $\frac{\mathrm{d} f}{\mathrm{~d} s}=v_{e}^{\prime}(s) / \tau \geq 0$ if $v_{e}^{\prime}(s) \geq 0 \mathrm{OK}$
(3) $\frac{d f}{\mathrm{~d} v_{l}}=0$ marginally OK
(4a) Bando OV function: $v_{\text {opt }}^{\prime}(s) \geq 0$ since $\tanh () \geq 0,. v_{\text {opt }}(s \rightarrow \infty)=v_{0}, v_{\text {opt }}(0)=0$ (OK) (4b) triangular OV function: $v_{\text {opt }}^{\prime}(s)=1 / T$ or $=0, v_{\text {opt }}(s \rightarrow \infty)=v_{0}, v_{\text {opt }}\left(s_{0}\right)=0$ OK
? show that the "triangular" OV function in fact leads to the triangular FD

OVM questions $f_{\mathrm{OVM}}\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$

OV functions: $\quad v_{\mathrm{opt}}^{\text {Bando }}=v_{0} \frac{\tanh \left(\frac{s}{\Delta s}-\beta\right)+\tanh \beta}{1+\tanh \beta}, \quad v_{\mathrm{opt}}^{\text {triang }}=\max \left[0, \min \left(v_{0}, \frac{s-s_{0}}{T}\right)\right]$
? Show that the steady state speed $v_{e}(s)$ is given by the optimal speed.
! Steady State $v=v_{l}, \frac{\mathrm{~d} v}{\mathrm{~d} t}=0: 0=\left(v_{\mathrm{opt}}(s)-v\right) / \tau$. Since the speed adaptation time $\tau>0$, we have $v=v_{e}(s)=v_{\text {opt }}(s)$
? Check the plausibility conditions
! (1) $\frac{\mathrm{d} f}{\mathrm{~d} v}=-1 / \tau<0 \mathrm{OK}$
(2) $\frac{\mathrm{d} f}{\mathrm{~d} s}=v_{e}^{\prime}(s) / \tau \geq 0$ if $v_{e}^{\prime}(s) \geq 0 \mathrm{OK}$
(3) $\frac{d f}{\mathrm{~d} v_{l}}=0$ marginally OK
(4a) Bando OV function: $v_{\text {opt }}^{\prime}(s) \geq 0$ since $\tanh () \geq 0,. v_{\text {opt }}(s \rightarrow \infty)=v_{0}, v_{\text {opt }}(0)=0$ (OK) (4b) triangular OV function: $v_{\text {opt }}^{\prime}(s)=1 / T$ or $=0, v_{\text {opt }}(s \rightarrow \infty)=v_{0}, v_{\text {opt }}\left(s_{0}\right)=0 \mathrm{OK}$
? show that the "triangular" OV function in fact leads to the triangular FD
! triangular FD: $Q(\rho)=\rho v_{\text {opt }}\left(1 / \rho-l-s_{0}\right)=\rho \max \left[0, \min \left(v_{0},(1 / \rho-l) / T\right)\right]=\max \left[0, \min \left(v_{0} \rho, 1 / T(1-\rho l)\right)\right]$ $=\max \left[0, \min \left(v_{0} \rho, 1 / T\left(1-\rho / \rho_{\max }\right)\right)\right]$

8.5. Full Velocity Difference Model (FVDM)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{\text {opt }}(s)-v}{\tau}+\gamma\left(v_{l}-v\right) \quad \text { Full Velocity Difference Model }
$$

- The FVDM is the optimal-velocity model with an additional sensitivity to the relative speed $v-v_{l}$ to the leader
- The additional sensitivity parameter γ has values of the order of $0.5 \mathrm{~s}^{-1}$
- As in the OVM, the homogeneous steady state speed

8.5. Full Velocity Difference Model (FVDM)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{\text {opt }}(s)-v}{\tau}+\gamma\left(v_{l}-v\right) \quad \text { Full Velocity Difference Model }
$$

- The FVDM is the optimal-velocity model with an additional sensitivity to the relative speed $v-v_{l}$ to the leader
- The additional sensitivity parameter γ has values of the order of $0.5 \mathrm{~s}^{-1}$
\rightarrow As in the OVM, the homogeneous steady state speed $v_{e}(s)=v_{\text {opt }}(s)$
\rightarrow As a pure car-following model, the FVDM behaves more realistically. However, in contrast to the OVM. it is not complete

8.5. Full Velocity Difference Model (FVDM)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{\text {opt }}(s)-v}{\tau}+\gamma\left(v_{l}-v\right) \quad \text { Full Velocity Difference Model }
$$

- The FVDM is the optimal-velocity model with an additional sensitivity to the relative speed $v-v_{l}$ to the leader
- The additional sensitivity parameter γ has values of the order of $0.5 \mathrm{~s}^{-1}$
- As in the OVM, the homogeneous steady state speed $v_{e}(s)=v_{\text {opt }}(s)$
- As a pure car-following model, the FVDM behaves more realistically. However, in contrast to the OVM, it is not complete

8.5. Full Velocity Difference Model (FVDM)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{\text {opt }}(s)-v}{\tau}+\gamma\left(v_{l}-v\right) \quad \text { Full Velocity Difference Model }
$$

- The FVDM is the optimal-velocity model with an additional sensitivity to the relative speed $v-v_{l}$ to the leader
- The additional sensitivity parameter γ has values of the order of $0.5 \mathrm{~s}^{-1}$
- As in the OVM, the homogeneous steady state speed $v_{e}(s)=v_{\text {opt }}(s)$
- As a pure car-following model, the FVDM behaves more realistically. However, in contrast to the OVM, it is not complete Why?

8.5. Full Velocity Difference Model (FVDM)

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{v_{\text {opt }}(s)-v}{\tau}+\gamma\left(v_{l}-v\right) \quad \text { Full Velocity Difference Model }
$$

- The FVDM is the optimal-velocity model with an additional sensitivity to the relative speed $v-v_{l}$ to the leader
- The additional sensitivity parameter γ has values of the order of $0.5 \mathrm{~s}^{-1}$
- As in the OVM, the homogeneous steady state speed $v_{e}(s)=v_{\text {opt }}(s)$
- As a pure car-following model, the FVDM behaves more realistically. However, in contrast to the OVM, it is not complete Why? For $s \rightarrow \infty$, the FVDM acceleration still depends strongly on v_{l} thereby violating plausibility requirement (3b) $\lim _{s \rightarrow \infty} \frac{\partial f}{\partial v_{l}}=0$: There is no transition from car-following to free traffic

Factsheet of Bando's Full Velocity Difference Model (FVDM)

freeway with on-ramp

city with traffic lights
spot and explain
the unrealistic behaviour!

Factsheet of the FVDM with triangular FD

freeway with on-ramp
city with traffic lights

Factsheet of the modified FVDM with triangular FD

$$
f\left(s, v, v_{l}\right)=\left(v_{\mathrm{opt}}^{\mathrm{triang}}-v\right) / \tau+\gamma\left(v_{l}-v\right) \min \left(1, v_{0} T / s\right)
$$

city with traffic lights

8.6 Newell's Car-Following Model

$$
v(t+T)=v_{\text {opt }}(s(t)), \quad v_{\text {opt }}(s)=\min \left(v_{0}, \frac{s}{T}\right) \quad \text { Newell's Model }
$$

- The OV relation can also be written in terms of the distance headway $\tilde{v}_{\text {opt }}(d)=v_{\text {opt }}\left(s+l_{\text {eff }}\right)$ and represents the triangular FD (check!)
\rightarrow Three parameters: effective vehicle length $l_{\text {eff }}\left(\right.$ incl minimum gap s_{0}), reaction time T and desired sneed mo

8.6 Newell's Car-Following Model

$$
v(t+T)=v_{\text {opt }}(s(t)), \quad v_{\text {opt }}(s)=\min \left(v_{0}, \frac{s}{T}\right) \quad \text { Newell's Model }
$$

- The OV relation can also be written in terms of the distance headway $\tilde{v}_{\text {opt }}(d)=v_{\text {opt }}\left(s+l_{\text {eff }}\right)$ and represents the triangular FD (check!)

$$
Q(\rho)=\min \left[V_{0} \rho, \frac{1}{T}\left(1-\rho l_{\mathrm{eff}}\right)\right]
$$

- Three parameters: effective vehicle length $l_{\text {eff }}$ (incl minimum gap s_{0}), reaction time T, and desired speed v_{0}
T is not only the reaction time but also the time gap, the speed adaptation time, and the numerical undate timesten

8.6 Newell's Car-Following Model

$$
v(t+T)=v_{\text {opt }}(s(t)), \quad v_{\text {opt }}(s)=\min \left(v_{0}, \frac{s}{T}\right) \quad \text { Newell's Model }
$$

- The OV relation can also be written in terms of the distance headway $\tilde{v}_{\text {opt }}(d)=v_{\text {opt }}\left(s+l_{\text {eff }}\right)$ and represents the triangular FD (check!)

$$
Q(\rho)=\min \left[V_{0} \rho, \frac{1}{T}\left(1-\rho l_{\text {eff }}\right)\right]
$$

- Three parameters: effective vehicle length $l_{\text {eff }}$ (incl minimum gap s_{0}), reaction time T, and desired speed v_{0}
$\rightarrow T$ is not only the reaction time but also the time gap, the speed adaptation time, and the numerical update timestep (check!)

8.6 Newell's Car-Following Model

$$
v(t+T)=v_{\mathrm{opt}}(s(t)), \quad v_{\mathrm{opt}}(s)=\min \left(v_{0}, \frac{s}{T}\right) \quad \text { Newell's Model }
$$

- The OV relation can also be written in terms of the distance headway $\tilde{v}_{\text {opt }}(d)=v_{\text {opt }}\left(s+l_{\text {eff }}\right)$ and represents the triangular FD (check!)

$$
Q(\rho)=\min \left[V_{0} \rho, \frac{1}{T}\left(1-\rho l_{\text {eff }}\right)\right]
$$

- Three parameters: effective vehicle length $l_{\text {eff }}$ (incl minimum gap s_{0}), reaction time T, and desired speed v_{0}
- T is not only the reaction time but also the time gap, the speed adaptation time, and the numerical update timestep (check!)

Newell's car-following model: properties

- Constant wave speed w by considering the start of a queue of standing vehicles (distance headway $d=l_{\text {eff }}$) or simply by the general expression $w=Q_{\text {cong }}^{\prime}(\rho)$ from the congested part of the FD:

$$
w=-l_{\mathrm{eff}} / T
$$

[^2]
Newell's car-following model: properties

- Constant wave speed w by considering the start of a queue of standing vehicles (distance headway $d=l_{\text {eff }}$) or simply by the general expression $w=Q_{\text {cong }}^{\prime}(\rho)$ from the congested part of the FD:

$$
w=-l_{\text {eff }} / T
$$

- This means that, in the car-following regime $\left(s / T<v_{0}\right)$, the follower adopts the leader's speed one "reaction time" T ago and proceeds by the gap value one "reaction time" T ago: $v(t+T)=v_{l}(t), \quad x(t+T)=x_{l}(t)-l_{\text {eff }}$

Numerics of Newell's micromodel: iterated map for $v_{0}=2 l_{\text {eff }} / T$

Numerics of Newell's micromodel: iterated map for $v_{0}=2 l_{\text {eff }} / T$

Numerics of Newell's micromodel: iterated map for $v_{0}=2 l_{\text {eff }} / T$

Numerics of Newell's micromodel: iterated map for $v_{0}=2 l_{\text {eff }} / T$

Numerics of Newell's micromodel: iterated map for $v_{0}=2 l_{\text {eff }} / T$

Numerics of Newell's micromodel: iterated map for $v_{0}=2 l_{\text {eff }} / T$

Numerics of Newell's micromodel: iterated map for $v_{0}=2 l_{\text {eff }} / T$

Numerics of Newell's micromodel: iterated map for $v_{0}=2 l_{\text {eff }} / T$

8.7. Car-Following Cellular Automata (CA)

Cellular automata (CA) describe all aspects of dynamical systems by using (generally small) integers:

- Space is subdicided into cells
- Time is subdivided into time steps Δt

8.7. Car-Following Cellular Automata (CA)

Cellular automata (CA) describe all aspects of dynamical systems by using (generally small) integers:

- Space is subdicided into cells
\rightarrow Time is subdivided into time steps Δt
\rightarrow State variables are multiplies of the natural unit, e.g., speed in cells/ Δt and accelerations in cells $/(\Delta t)$

8.7. Car-Following Cellular Automata (CA)

Cellular automata (CA) describe all aspects of dynamical systems by using (generally small) integers:

- Space is subdicided into cells
- Time is subdivided into time steps Δt
- State variables are multiplies of the natural unit, e.g., speed in cells/ Δt and accelerations in cells $/(\Delta t)^{2}$
\qquad
\qquad

8.7. Car-Following Cellular Automata (CA)

Cellular automata (CA) describe all aspects of dynamical systems by using (generally small) integers:

- Space is subdicided into cells
- Time is subdivided into time steps Δt
- State variables are multiplies of the natural unit, e.g., speed in cells/ Δt and accelerations in cells $/(\Delta t)^{2}$
\rightarrow In the Euler or occupation number representation the dynamical unit is a cell that can be occupied (1) or not (0) [here, the maximum speed $v_{0}=1$ and we have redefined the state $-1 \rightarrow 0$ for empty, and 0 or $1 \rightarrow 1$ for occupied with speed 0 or 1 to match the historic example] such as in the famous Rule $184\left(=2^{7}+2^{5}+2^{4}+2^{3}\right)$

\qquad
\qquad

8.7. Car-Following Cellular Automata (CA)

Cellular automata (CA) describe all aspects of dynamical systems by using (generally small) integers:

- Space is subdicided into cells
- Time is subdivided into time steps Δt
- State variables are multiplies of the natural unit, e.g., speed in cells/ Δt and accelerations in cells $/(\Delta t)^{2}$
- In the Euler or occupation number representation the dynamical unit is a cell that can be occupied (1) or not (0) [here, the maximum speed $v_{0}=1$ and we have redefined the state $-1 \rightarrow 0$ for empty, and 0 or $1 \rightarrow 1$ for occupied with speed 0 or 1 to match the historic example] such as in the famous Rule $184\left(=2^{7}+2^{5}+2^{4}+2^{3}\right)$ (try to understand it):

current local pattern	$7=$	$6=$	$5=$	$4=$	$3=$	$2=$	$1=$	$0=$
	111	110	101	100	011	010	001	000
new state of the center cell	1	0	1	1	1	0	0	0

- In the Lagrange representation a CA looks like a discretized car-following model such as the Nagel-Schreckenberg Model below

8.7. Car-Following Cellular Automata (CA)

Cellular automata (CA) describe all aspects of dynamical systems by using (generally small) integers:

- Space is subdicided into cells
- Time is subdivided into time steps Δt
- State variables are multiplies of the natural unit, e.g., speed in cells/ Δt and accelerations in cells $/(\Delta t)^{2}$
- In the Euler or occupation number representation the dynamical unit is a cell that can be occupied (1) or not (0) [here, the maximum speed $v_{0}=1$ and we have redefined the state $-1 \rightarrow 0$ for empty, and 0 or $1 \rightarrow 1$ for occupied with speed 0 or 1 to match the historic example] such as in the famous Rule $184\left(=2^{7}+2^{5}+2^{4}+2^{3}\right)$ (try to understand it):

current local pattern	$7=$	$6=$	$5=$	$4=$	$3=$	$2=$	$1=$	$0=$
	111	110	101	100	011	010	001	000
new state of the center cell	1	0	1	1	1	0	0	0

- In the Lagrange representation a CA looks like a discretized car-following model such as the Nagel-Schreckenberg Model below

Nagel-Schreckenberg Model (NSM) and the Barlovic Model

These are Stochastic CAs in the Lagrange representation, i.e., the relevant unit is a vehicle i rather than a cell k :

Deterministic acceleration as a function of the speed v_{i}, desired speed v_{0} and gap (number of empty cells) g_{i}
\qquad
\qquad

Nagel-Schreckenberg Model (NSM) and the Barlovic Model

These are Stochastic CAs in the Lagrange representation, i.e., the relevant unit is a vehicle i rather than a cell k :

1. Deterministic acceleration as a function of the speed v_{i}, desired speed v_{0} and gap (number of empty cells) g_{i} :

$$
v_{i}^{*}(t+1)=\min \left(v_{i}(t)+1, v_{0}, g_{i}\right)
$$

Dawdling by not accelerating, or braking more than necessary, with a certain dawdling probability p :

In the Barlovic model, the "slow-to-start" rule applies, i.e., the probability p_{0} for standing vehicles $\left(v_{i}(t)=0\right)$ is higher than p for driving vehicles
\rightarrow Driving by moving $v_{i}(t+1)$ cells forward

Nagel-Schreckenberg Model (NSM) and the Barlovic Model

These are Stochastic CAs in the Lagrange representation, i.e., the relevant unit is a vehicle i rather than a cell k :

1. Deterministic acceleration as a function of the speed v_{i}, desired speed v_{0} and gap (number of empty cells) g_{i} :

$$
v_{i}^{*}(t+1)=\min \left(v_{i}(t)+1, v_{0}, g_{i}\right)
$$

2. Dawdling by not accelerating, or braking more than necessary, with a certain dawdling probability p :

$$
v_{i}(t+1)= \begin{cases}\max \left(v_{i}^{*}(t+1)-1,\right. & \text { with probability } p \\ v_{i}^{*}(t+1) & \text { otherwise } .\end{cases}
$$

In the Barlovic model, the "slow-to-start" rule applies, i.e., the probability p_{0} for standing vehicles $\left(v_{i}(t)=0\right)$ is higher than p for driving vehicles

- Driving by moving $v_{i}(t+1)$ cells forward

Nagel-Schreckenberg Model (NSM) and the Barlovic Model

These are Stochastic CAs in the Lagrange representation, i.e., the relevant unit is a vehicle i rather than a cell k :

1. Deterministic acceleration as a function of the speed v_{i}, desired speed v_{0} and gap (number of empty cells) g_{i} :

$$
v_{i}^{*}(t+1)=\min \left(v_{i}(t)+1, v_{0}, g_{i}\right)
$$

2. Dawdling by not accelerating, or braking more than necessary, with a certain dawdling probability p :

$$
v_{i}(t+1)= \begin{cases}\max \left(v_{i}^{*}(t+1)-1,\right. & 0) \\ v_{i}^{*}(t+1) & \text { with probability } p \\ \text { otherwise } .\end{cases}
$$

In the Barlovic model, the "slow-to-start" rule applies, i.e., the probability p_{0} for standing vehicles $\left(v_{i}(t)=0\right)$ is higher than p for driving vehicles

- Driving by moving $v_{i}(t+1)$ cells forward:

$$
x_{i}(t+1)=x_{i}(t)+v_{i}(t+1) .
$$

Nagel-Schreckenberg Model (NSM) and the Barlovic Model

These are Stochastic CAs in the Lagrange representation, i.e., the relevant unit is a vehicle i rather than a cell k :

1. Deterministic acceleration as a function of the speed v_{i}, desired speed v_{0} and gap (number of empty cells) g_{i} :

$$
v_{i}^{*}(t+1)=\min \left(v_{i}(t)+1, v_{0}, g_{i}\right)
$$

2. Dawdling by not accelerating, or braking more than necessary, with a certain dawdling probability p :

$$
v_{i}(t+1)= \begin{cases}\max \left(v_{i}^{*}(t+1)-1,\right. & \text { with probability } p, \\ v_{i}^{*}(t+1) & \text { otherwise. }\end{cases}
$$

In the Barlovic model, the "slow-to-start" rule applies, i.e., the probability p_{0} for standing vehicles $\left(v_{i}(t)=0\right)$ is higher than p for driving vehicles

- Driving by moving $v_{i}(t+1)$ cells forward:

$$
x_{i}(t+1)=x_{i}(t)+v_{i}(t+1) .
$$

Verify that Rule 184 corresponds to the determinstic NSM with $v_{0}=1$

Nagel-Schreckenberg Model (NSM) and the Barlovic Model

These are Stochastic CAs in the Lagrange representation, i.e., the relevant unit is a vehicle i rather than a cell k :

1. Deterministic acceleration as a function of the speed v_{i}, desired speed v_{0} and gap (number of empty cells) g_{i} :

$$
v_{i}^{*}(t+1)=\min \left(v_{i}(t)+1, v_{0}, g_{i}\right)
$$

2. Dawdling by not accelerating, or braking more than necessary, with a certain dawdling probability p :

$$
v_{i}(t+1)= \begin{cases}\max \left(v_{i}^{*}(t+1)-1,\right. & \text { with probability } p, \\ v_{i}^{*}(t+1) & \text { otherwise. }\end{cases}
$$

In the Barlovic model, the "slow-to-start" rule applies, i.e., the probability p_{0} for standing vehicles $\left(v_{i}(t)=0\right)$ is higher than p for driving vehicles

- Driving by moving $v_{i}(t+1)$ cells forward:

$$
x_{i}(t+1)=x_{i}(t)+v_{i}(t+1) .
$$

Verify that Rule 184 corresponds to the determinstic NSM with $v_{0}=1$
Then, a car moves by one cell whenever the new cell is free. Compare with the Rule-184 table

How the NSM works ($v_{0}=2$)

Parameter	Typ. Highway	Value	Typ. City
Cell length $\Delta x_{\text {phys }}=l_{\text {eff }}$	7.5 m	7.5 m	
Time step $\Delta t_{\text {phys }}$	1 s	1 s	
Desired speed v_{0}	5	2	
Dawdling probability p	0.2	0.1	
Prob. p_{0} when stopped (Barlovic)	0.4	0.2	

How the NSM works ($v_{0}=2$)

Parameter	Typ. Highway	Value	Typ. City
Cell length $\Delta x_{\text {phys }}=l_{\text {eff }}$	7.5 m	7.5 m	
Time step $\Delta t_{\text {phys }}$	1 s	1 s	
Desired speed v_{0}	5	2	
Dawdling probability p	0.2	0.1	
Prob. p_{0} when stopped (Barlovic)	0.4	0.2	

How the NSM works ($v_{0}=2$)

Parameter	Typ. Highway	Value	Typ. City
Cell length $\Delta x_{\text {phys }}=l_{\text {eff }}$	7.5 m	7.5 m	
Time step $\Delta t_{\text {phys }}$	1 s	1 s	
Desired speed v_{0}	5	2	
Dawdling probability p	0.2	0.1	
Prob. p_{0} when stopped (Barlovic)	0.4	0.2	

How the NSM works ($v_{0}=2$)

Parameter	Typ. Highway	Value	Typ. City
Cell length $\Delta x_{\text {phys }}=l_{\text {eff }}$	7.5 m	7.5 m	
Time step $\Delta t_{\text {phys }}$	1 s	1 s	
Desired speed v_{0}	5	2	
Dawdling probability p	0.2	0.1	
Prob. p_{0} when stopped (Barlovic)	0.4	0.2	

How the NSM works ($v_{0}=2$)

Parameter	Typ. Highway	Value	Typ. City
Cell length $\Delta x_{\text {phys }}=l_{\text {eff }}$	7.5 m	7.5 m	
Time step $\Delta t_{\text {phys }}$	1 s	1 s	
Desired speed v_{0}	5	2	
Dawdling probability p	0.2	0.1	
Prob. p_{0} when stopped (Barlovic)	0.4	0.2	

Factsheet of the Nagel-Schreckenberg Model (NSM)

city with traffic lights $v_{\max }=2$

Factsheet of the CA model of Barlovic

city with traffic lights $v_{\max }=2$

Factsheet of the CA model of Kerner

There are many more "refined" CAs, e.g., the KCA with a cell size of only 0.5 m freeway with on-ramp $v_{\text {max }}=56$ city with traffic lights $v_{\max }=28$

[^0]: - Strategic level: route choice

[^1]: - higher-level micromodels for whole routes: multi-agent model

[^2]: - This means that, in the car-following regime $\left(s / T<v_{0}\right)$, the follower adopts the leader's speed one "reaction time" T ago and proceeds by the gap value one "reaction time" T ago:

