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8.1 Difference between Micro and Macromodels

Microscopic:
describes the trajectories or FC
time series

Macroscopic:
describes the inverse of the local
distance of the lines (density)
or the local gradient of the tra-

jectories (local speed)
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Characterisation of Microscopic Models

I Generally, microscopic models consider the smallest objects that make sense/play a
role in the given context, e.g., molecules/atoms/elementary particles in physics or
individual decision makers in economics.

I In traffic flow, this smallest object usually is the driver-vehicle unit (why vehicle and
driver?) but it can also be a cyclist, a pedestrian, or others.

I Microscopic models are more detailled than the macroscopic models discussed in the
previous sections which locally aggregate the microscopic quantities.

I Microscopic models are less detailled than models for the vehicle dynamics
(“submicroscopic models”) treating aspects such as brake and engine control path,
slip, or stability control
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Where micromodels play out their advantages: heterogeneous traffic

Microscopic models play out their advantages when describing different driver-vehicle
units, i.e., heterogeneous traffic. They are also called self-driven particles or agents
(no stirring or shaking involved!).

There are four conceptual levels for heterogeneity that all can be tackled:

I Same model, same vehicle category, same driving style: Since drivers are no
machines, some acceleration noise is plausible.

I Same model, same vehicle category (e.g., only cars or only trucks), different driving
styles (e.g. considerate or aggressive): every agent gets its individual parameter set
drawn from a distribution

I Same model, different vehicle categories, different styles: The agents of each
category get their parameters from separate distributions

I Different models: Fundamentally different agents such as human vs. autonomous
driving, cycles, tuctucs/motor-rickshaws, cars/trucks
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8.2 Microscopic Traffic Flow Models:
Types and Mathematical Forms

I Generally, microscopic traffic flow models can describe any aspect of the dynamics of
a driver and his/her vehicle on two levels:
I Operative level: accelerating, braking, steering
I Tactical levels: lane changing, entering a priority road and other discrete-choice tasks
I Strategic level: route choice

I Hence, their are different model categories:
I Car-following (CF) models or more generally models for the longitudinal dynamics are

the most important representatives of microscopic traffic flow models
I lane-changing models or integrated models (combining longitudinal and lateral

dynamics)
I non-lane-based models, e.g., for mixed traffic (India), cross-country skiing and

running events,
I general discrete-choice models for situations such as entering or crossing a road,

stopping behind a traffic light
I higher-level micromodels for whole routes: multi-agent models
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Mathematical forms

I Continuous in space and time: coupled ordinary differential equations (ODEs)
as in Newtonian dynamics:

dxi
dt

= vi,
dvi
dt

= fi(xi, xi−1, vi, vi−1, ..)

Why fi(.) instead of f(.)? Different driving styles or even models

I Discrete update timesteps: iterated maps

xi(t+ ∆t) = fxi (xi(t), vi(t)), vi(t+ ∆t) = fvi (xi(t), xi−1(t), vi(t), vi−1(t), ..)

I Space, time, and state are all discrete: cellular automata(CA)

v(t+ 1) = fCA(v(t)), vk =


−1 cell k empty

0, 1, ... cell k occupied,
speed vphys

k = vk∆x/∆t

? Give the frame of reference (Euler or Lagrange) of each mathematical form CA: Euler;
the others: Lagrange
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8.3 Car-Following Models

Most car-following models consider just the immediate leader, exactly like an adaptive-cruise
control (ACC) system:

I Independent variables: speed vi, gap si = xi−1 − xi − li−1, and leading speed vi−1 := vl

I Position xi: front bumper of vehicle i, increasing in driving direction

I Indices i as in a race: the first becomes Number 1, so xi−1 > xi
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Clarification: headways and gaps

I Headways always denote differences including the vehicle’s occupancy time or length:

I The time headway or simple headway ∆ti = ti − ti−1 gives the time interval between
consecutive vehicles passing a fixed spot

I The distance headway di = xi−1 − xi gives the distance of the vehicle fronts between
leader and follower at a fixed time

I Gaps always denote the bumper-to-bumper differences

I The time gap Ti = ti − ti−1 − li−1/vi−1 gives the time interval of no occupation
between leader and follower at a fixed spot. It is the time headway minus the leader’s
occupancy time

I The distance gap or simply gap si = xi−1 − xi − li−1 gives the bumper to bumper
gap, i.e., distance headway minus the leader’s vehicle length

I The time to collision T c
i = s/(vi − vi−1) gives exactly that if vi > vi−1 and there are no

accelerations.
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Model plausibility and completeness

A (generalized) car-following model is complete if it is able to
realistically describe free flow and all common steady-state and
dynamic situations with a leader

Free flow:

I realistic acceleration profile

I existence of a desired speed v0

Steady-state:

I existence of a minimum gap

I following a leader at a
plausible time gap

I transition to the free-flow state
for sufficiently large gaps
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Model plausibility and completeness II

dynamic situations:
I when closing in, regular transition to a car-following

situation

I when approaching a stopped obstacle (vehicle queue
or red traffic light), regular deceleration to a stop at
some minimum gap

I handling of a target change (cutting in and out of
leaders)

I handling of emergency situations (transition to
closing in)

collective phenomena:
I traffic breakdown at situations where it is observed

I traffic flow instabilities

I formation of traffic waves with the right properties

I Producing the right flow-density data from virtual
stationary detectors
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Example of a complete model: IDM

Test 1: freeway with on-ramp: OK Test 2: traffic lights: OK



Traffic Flow Dynamics 8. Elementary Car-Following Models 8.3 Car-Following Models

Example of an incomplete model: FVDM

Test 1: freeway with on-ramp: OK
Test 2: traffic lights:
transition to free flow fails(v0 = 54 km/h)
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Plausibility criteria: the acceleration function

Formulate both ODE and iterated map models such that f(.) stands for the acceleration
function:

I ODE models:

dxi
dt

= vi,
dvi
dt

= f(si, vi, vi−1) ≡ f(s, v, vl)

I Iterated-map models:

vi(t+ ∆t) = vi(t) + f(si(t), vi(t), vi−1(t)) ∆t,
xi(t+ ∆t) = xi(t) + 1

2 [vi(t) + vi(t+ ∆t)] ∆t
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Plausibility criteria: the IDM acceleration function
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Plausibility criteria: the IDMplus acceleration function



Traffic Flow Dynamics 8. Elementary Car-Following Models 8.3 Car-Following Models

Plausibility criteria I

A necessary condition for completeness is that the following plausibility conditions are
satisfied:

(1) Dependence of the acceleration on the own speed and existence of a desired speed v0:

∂f(s, v, vl)

∂v
< 0, lim

s→∞
f(s, v0, vl) = 0

(2) Dependence on the gap with limiting case of no interaction:

∂f(s, v, vl)

∂s
≥ 0, lim

s→∞

∂f(s, v, vl)

∂s
= 0

(3) Dependence on the leader’s speed:

∂f(s, v, vl)

∂vl
≥ 0, lim

s→∞

∂f(s, v, vl)

∂vl
= 0,

∣∣∣∣ ∂f∂vl
∣∣∣∣ ≤ ∣∣∣∣∂f∂v

∣∣∣∣
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Plausibility criteria II: Steady-state relation

Steady-state speed-gap relation and existence of a min-
imum gap:
The steady-state speed ve(s) defined by
f(s, ve(s), ve(s)) = 0 satisfies

v′e(s) ≥ 0, lim
s→∞

ve(s) = v0, ve(s0) = 0 for some s0 > 0

Express v′e(s) in terms of ∂f
∂s , ∂f

∂v , and ∂f
∂vl

and show that this condition follows from (1) and (2)

f(se, v, v) = 0

⇒ 0 = df

=
∂f

∂s
ds +

∂f

∂v
dv +

∂f

∂vl
dv

=

(
∂f

∂s
+
∂f

∂v
v′e(s) +

∂f

∂vl
v′e(s)

)
ds

⇒ v′e(s) = − ∂f
∂s
/
(

∂f
∂v

+ ∂f
∂vl

)
≥ 0 since ∂f

∂s
≥ 0, ∂f

∂v
< 0, and

∣∣∣ ∂f
∂vl

∣∣∣ ≤ ∣∣∣ ∂f∂v ∣∣∣
and ve(s→∞) = v0 from (1)
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Some Examples of Elementary Car-Following Models

I Not really useful for actually
simulating traffic flow

I but very good for showing the
basic principles,

I also serve as basis for the more
sophisticated ones

8.4 Optimal Velocity Model

8.5 Full Velocity Difference Model

8.6 Newell’s Car-Following Model

8.7 Car-Following Cellular Automata
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8.4 Optimal Velocity Model (OVM)

dv

dt
=
vopt(s)− v

τ
Optimal Velocity Model

Whole model class parameterized by the optimal-velocity function vopt(s), e.g.,

I Original OVM function by Bando et al:

vopt(s) = v0
tanh

(
s

∆s − β
)

+ tanhβ

1 + tanhβ

I OVM function corresponding to the triangular FD:

vopt(s) = max

[
0, min

(
v0,

s− s0

T

)]
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OV functions

Bando OV function triangular OV function
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Properties of the Optimal Velocity Model (OVM)

I The homogeneous-steady-state speed ve(s) is given by the OV function

I Technically, the model marginally satisfies all plausibility conditions (no sensitivity to
the leader’s speed) but results in unrealistic accelerations, or crashes, or both

I Besides the parameters of the OV function, the OVM has the speed relaxation time
τ as additional parameter:
I The more responsive the driver, the lower τ ,
I the higher τ , the more instabilities

Parameter Typical Value Typical Value
Highway City Traffic

Adaptation time τ 0.65 s 0.65 s
Desired speed v0 120 km/h 54 km/h

Transition width ∆s (Bando FD) 15 m 8 m
Form factor β (Bando FD) 1.5 1.5

Time gap T (triangular FD) 1.4 s 1.2 s
Minimum distance gap s0 (triangular FD) 3 m 2 m
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Factsheet of the Optimal Velocity Model (OVM)

freeway with on-ramp city with traffic lights
extreme accelerations!
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OVM questions fOVM(s, v, vl) = (vopt(s) − v)/τ

OV functions: vBando
opt = v0

tanh
(

s
∆s − β

)
+ tanhβ

1 + tanhβ
, vtriang

opt = max

[
0, min

(
v0,

s− s0

T

)]

? Show that the steady state speed ve(s) is given by the optimal speed.

! Steady State v = vl,
dv
dt

= 0: 0 = (vopt(s)− v)/τ . Since the speed adaptation time τ > 0, we have

v = ve(s) = vopt(s)

? Check the plausibility conditions

! (1) df
dv = −1/τ < 0 OK

(2) df
ds = v′e(s)/τ ≥ 0 if v′e(s) ≥ 0 OK

(3) df
dvl

= 0 marginally OK

(4a) Bando OV function: v′opt(s) ≥ 0 since tanh(.) ≥ 0, vopt(s→∞) = v0, vopt(0) = 0 (OK)
(4b) triangular OV function: v′opt(s) = 1/T or =0, vopt(s→∞) = v0, vopt(s0) = 0 OK

? show that the “triangular” OV function in fact leads to the triangular FD

! triangular FD: Q(ρ) = ρvopt(1/ρ− l− s0) = ρmax[0,min(v0, (1/ρ− l)/T )] = max[0,min(v0ρ, 1/T (1− ρl))]
= max[0,min(v0ρ, 1/T (1− ρ/ρmax))]
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8.5. Full Velocity Difference Model (FVDM)

dv

dt
=
vopt(s)− v

τ
+ γ(vl − v) Full Velocity Difference Model

I The FVDM is the optimal-velocity model with an additional sensitivity to the relative
speed v − vl to the leader

I The additional sensitivity parameter γ has values of the order of 0.5 s−1

I As in the OVM, the homogeneous steady state speed ve(s) = vopt(s)

I As a pure car-following model, the FVDM behaves more realistically. However, in
contrast to the OVM, it is not complete Why? For s→∞, the FVDM acceleration still

depends strongly on vl thereby violating plausibility requirement (3b) lims→∞
∂f
∂vl

= 0: There is no transition

from car-following to free traffic
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Factsheet of Bando’s Full Velocity Difference Model (FVDM)

freeway with on-ramp city with traffic lights
spot and explain
the unrealistic behaviour!
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Factsheet of the FVDM with triangular FD

freeway with on-ramp city with traffic lights
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Factsheet of the modified FVDM with triangular FD

freeway with on-ramp city with traffic lights

f(s, v, vl) = (vtriang
opt − v)/τ + γ(vl − v) min(1, v0T/s)
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8.6 Newell’s Car-Following Model

v(t+ T ) = vopt(s(t)), vopt(s) = min
(
v0,

s

T

)
Newell’s Model

I The OV relation can also be written in terms of the distance headway
ṽopt(d) = vopt(s+ leff) and represents the triangular FD (check!)

Q(ρ) = min

[
V0ρ,

1

T
(1− ρleff)

]

I Three parameters: effective vehicle length leff (incl minimum gap s0), reaction time
T , and desired speed v0

I T is not only the reaction time but also the time gap, the speed adaptation time, and
the numerical update timestep (check!)
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Newell’s car-following model: properties

I Constant wave speed w by considering the start of a queue of standing vehicles (distance
headway d = leff) or simply by the general expression w = Q′cong(ρ) from the congested part
of the FD:

w = −leff/T

I This means that, in the car-following regime (s/T < v0), the follower adopts the leader’s
speed one “reaction time” T ago and proceeds by the gap value one “reaction time” T ago:

v(t+ T ) = vl(t), x(t+ T ) = xl(t)− leff
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Numerics of Newell’s micromodel: iterated map for v0 = 2leff/T
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8.7. Car-Following Cellular Automata (CA)

Cellular automata (CA) describe all aspects of dynamical systems by using (generally
small) integers:

I Space is subdicided into cells

I Time is subdivided into time steps ∆t

I State variables are multiplies of the natural unit, e.g., speed in cells/∆t and
accelerations in cells/(∆t)2

I In the Euler or occupation number representation the dynamical unit is a cell that
can be occupied (1) or not (0) [here, the maximum speed v0 = 1 and we have
redefined the state −1→ 0 for empty, and 0 or 1 → 1 for occupied with speed 0 or 1
to match the historic example] such as in the famous Rule 184 (= 27 + 25 + 24 + 23)
(try to understand it):

current local pattern 7=
111

6=
110

5=
101

4=
100

3=
011

2=
010

1=
001

0=
000

new state of the center cell 1 0 1 1 1 0 0 0

I In the Lagrange representation a CA looks like a discretized car-following model
such as the Nagel-Schreckenberg Model below



Traffic Flow Dynamics 8. Elementary Car-Following Models 8.7 Cellular Automata

Nagel-Schreckenberg Model (NSM) and the Barlovic Model

These are Stochastic CAs in the Lagrange representation, i.e., the relevant unit is a vehicle i
rather than a cell k:

1. Deterministic acceleration as a function of the speed vi, desired speed v0 and gap (number of
empty cells) gi:

v∗i (t+ 1) = min
(
vi(t) + 1, v0, gi

)
2. Dawdling by not accelerating, or braking more than necessary, with a certain dawdling

probability p:

vi(t+ 1) =

{
max

(
v∗i (t+ 1)− 1, 0

)
with probability p,

v∗i (t+ 1) otherwise.

In the Barlovic model, the “slow-to-start” rule applies, i.e., the probability p0 for standing
vehicles (vi(t) = 0) is higher than p for driving vehicles

I Driving by moving vi(t+ 1) cells forward:

xi(t+ 1) = xi(t) + vi(t+ 1).

Verify that Rule 184 corresponds to the determinstic NSM with v0 = 1
Then, a car moves by one cell whenever the new cell is free. Compare with the Rule-184 table
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How the NSM works (v0 = 2)

Parameter Typ. Value
Highway

Typ. Value
City

Cell length ∆xphys = leff 7.5 m 7.5 m
Time step ∆tphys 1 s 1 s
Desired speed v0 5 2
Dawdling probability p 0.2 0.1
Prob. p0 when stopped (Barlovic) 0.4 0.2
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Factsheet of the Nagel-Schreckenberg Model (NSM)

freeway with on-ramp vmax = 5 city with traffic lights vmax = 2
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Factsheet of the CA model of Barlovic

freeway with on-ramp vmax = 5 city with traffic lights vmax = 2
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Factsheet of the CA model of Kerner

freeway with on-ramp vmax = 56 city with traffic lights vmax = 28

There are many more “refined” CAs, e.g., the KCA with a cell size of only 0.5 m
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