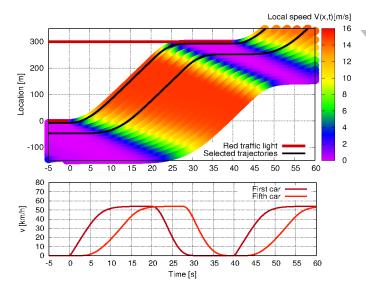
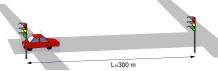
Lecture 08: Microscopic Models I Elementary Car-Following Models

- ► 8.1 Difference between Micro and Macromodels
- 8.2 Types and Mathematical Forms
- ► 8.3 Car-Following Models
- 8.4 Optimal Velocity Model
- ▶ 8.5 Full Velocity Difference Model
- ► 8.6 Newell's Car-Following Model
- 8.7 Car-Following Cellular Automata

8.1 Difference between Micro and Macromodels





Microscopic:

describes the trajectories or FC time series

Macroscopic:

describes the inverse of the local distance of the lines (density) or the local gradient of the trajectories (local speed)

Characterisation of Microscopic Models

- Generally, microscopic models consider the smallest objects that make sense/play a role in the given context, e.g., molecules/atoms/elementary particles in physics or individual decision makers in economics.
- In traffic flow, this smallest object usually is the **driver-vehicle unit** (why vehicle and driver?) but it can also be a cyclist, a pedestrian, or others.
- Microscopic models are more detailled than the macroscopic models discussed in the previous sections which locally aggregate the microscopic quantities.
- Microscopic models are less detailled than models for the vehicle dynamics
 ("submicroscopic models") treating aspects such as brake and engine control path,
 slip, or stability control

Where micromodels play out their advantages: heterogeneous traffic

Microscopic models play out their advantages when describing different **driver-vehicle units**, i.e., **heterogeneous traffic**. They are also called **self-driven particles** or **agents** (no stirring or shaking involved!).

There are four conceptual levels for heterogeneity that all can be tackled:

- ► Same model, same vehicle category, same driving style: Since drivers are no machines, some acceleration noise is plausible.
- ➤ Same model, same vehicle category (e.g., only cars or only trucks), different driving styles (e.g. considerate or aggressive): every agent gets its individual parameter set drawn from a distribution
- ► Same model, different vehicle categories, different styles: The agents of each category get their parameters from separate distributions
- ▶ *Different models:* Fundamentally different agents such as human vs. autonomous driving, cycles, tuctucs/motor-rickshaws, cars/trucks

8.2 Microscopic Traffic Flow Models: Types and Mathematical Forms

- Generally, microscopic traffic flow models can describe any aspect of the dynamics of a driver and his/her vehicle on two levels:
 - Operative level: accelerating, braking, steering
 - ► Tactical levels: lane changing, entering a priority road and other discrete-choice tasks
 - Strategic level: route choice
- Hence, their are different model categories:
 - Car-following (CF) models or more generally models for the longitudinal dynamics are the most important representatives of microscopic traffic flow models
 - lane-changing models or integrated models (combining longitudinal and lateral dynamics)
 - non-lane-based models, e.g., for mixed traffic (India), cross-country skiing and running events,
 - general discrete-choice models for situations such as entering or crossing a road, stopping behind a traffic light
 - higher-level micromodels for whole routes: multi-agent models

Mathematical forms

Continuous in space and time: coupled ordinary differential equations (ODEs) as in Newtonian dynamics:

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = v_i, \quad \frac{\mathrm{d}v_i}{\mathrm{d}t} = f_i(x_i, x_{i-1}, v_i, v_{i-1}, ..)$$

Why $f_i(.)$ instead of f(.)? Different driving styles or even models

Discrete update timesteps: iterated maps

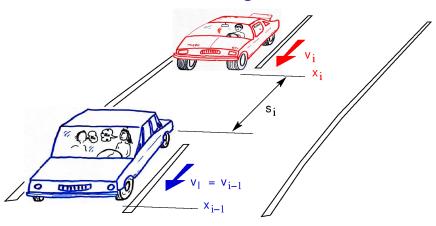
$$x_i(t + \Delta t) = f_i^x(x_i(t), v_i(t)), \quad v_i(t + \Delta t) = f_i^v(x_i(t), x_{i-1}(t), v_i(t), v_{i-1}(t), ...)$$

Space, time, and state are all discrete: cellular automata(CA)

$$\boldsymbol{v}(t+1) = \boldsymbol{f}^{\mathsf{CA}}(\boldsymbol{v}(t)), \quad v_k = \left\{ \begin{array}{ll} -1 & \text{cell } k \text{ empty} \\ \\ 0, 1, \dots & \text{cell } k \text{ occupied,} \\ & \text{speed } v_k^{\mathsf{phys}} = v_k \Delta x / \Delta t \end{array} \right.$$

? Give the frame of reference (Euler or Lagrange) of each mathematical form CA: Euler; the others: Lagrange

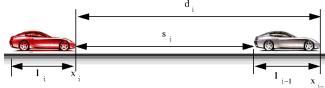
8.3 Car-Following Models



Most car-following models consider just the immediate leader, exactly like an **adaptive-cruise control (ACC)** system:

- ▶ Independent variables: speed v_i , gap $s_i = x_{i-1} x_i l_{i-1}$, and leading speed $v_{i-1} := v_l$
- Position x_i : front bumper of vehicle i, increasing in driving direction
- ▶ Indices i as in a race: the first becomes Number 1, so $x_{i-1} > x_i$

Clarification: headways and gaps



- ► **Headways** always denote differences including the vehicle's occupancy time or length:
 - ▶ The **time headway** or simple **headway** $\Delta t_i = t_i t_{i-1}$ gives the time interval between consecutive vehicles passing a fixed spot
 - ▶ The distance headway $d_i = x_{i-1} x_i$ gives the distance of the vehicle fronts between leader and follower at a fixed time
- ▶ Gaps always denote the bumper-to-bumper differences
 - The time gap $T_i = t_i t_{i-1} l_{i-1}/v_{i-1}$ gives the time interval of no occupation between leader and follower at a fixed spot. It is the time headway minus the leader's occupancy time
 - The distance gap or simply gap $s_i = x_{i-1} x_i l_{i-1}$ gives the bumper to bumper gap, i.e., distance headway minus the leader's vehicle length
- ▶ The time to collision $T_i^c = s/(v_i v_{i-1})$ gives exactly that if $v_i > v_{i-1}$ and there are no accelerations.

Model plausibility and completeness

A (generalized) car-following model is **complete** if it is able to realistically describe free flow and all common steady-state and dynamic situations with a leader

Free flow:

- realistic acceleration profile
- lacktriangle existence of a desired speed v_0

Steady-state:

- existence of a minimum gap
- following a leader at a plausible time gap
- transition to the free-flow state for sufficiently large gaps

Model plausibility and completeness II

dynamic situations:

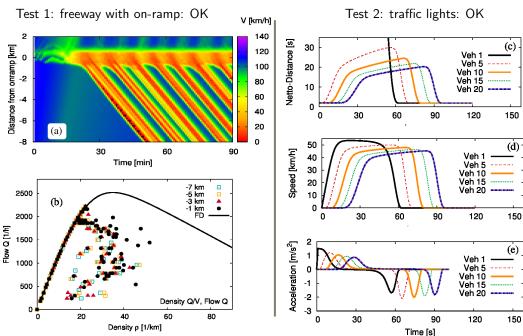
- when closing in, regular transition to a car-following situation
- when approaching a stopped obstacle (vehicle queue or red traffic light), regular deceleration to a stop at some minimum gap
- handling of a target change (cutting in and out of leaders)
- handling of emergency situations (transition to closing in)

collective phenomena:

- traffic breakdown at situations where it is observed
- traffic flow instabilities
- ▶ formation of traffic waves with the right properties
- ▶ Producing the right flow-density data from *virtual* stationary detectors

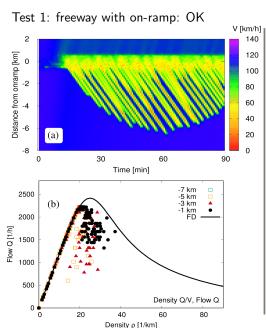
TECHNISCHE UNIVERSITÄT DRESOEN

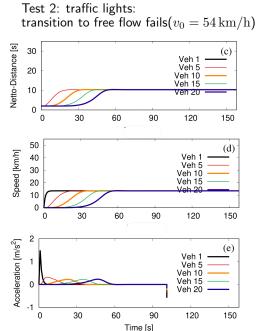
Example of a complete model: IDM



TECHNISCHE UNIVERSITÄT DRESOEN

Example of an incomplete model: FVDM





Plausibility criteria: the acceleration function

Formulate both ODE and iterated map models such that f(.) stands for the acceleration function:

► ODE models:

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = v_i, \quad \frac{\mathrm{d}v_i}{\mathrm{d}t} = f(s_i, v_i, v_{i-1}) \equiv f(s, v, v_l)$$

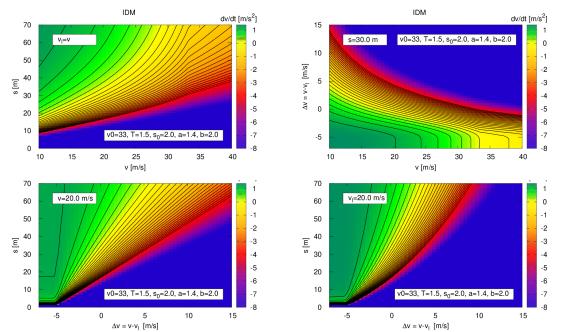
Iterated-map models:

$$v_{i}(t + \Delta t) = v_{i}(t) + f(s_{i}(t), v_{i}(t), v_{i-1}(t)) \Delta t,$$

$$x_{i}(t + \Delta t) = x_{i}(t) + \frac{1}{2} [v_{i}(t) + v_{i}(t + \Delta t)] \Delta t$$

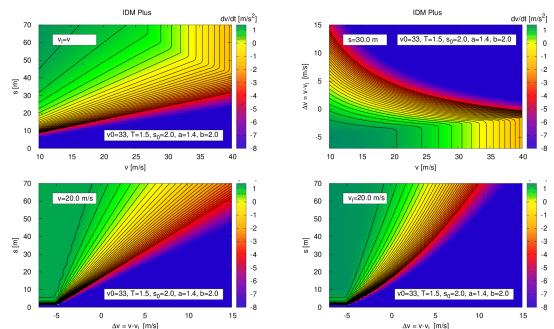
Plausibility criteria: the IDM acceleration function

TECHNISCHE UNIVERSITÄT DRESDEN



Plausibility criteria: the IDMplus acceleration function

TECHNISCHE UNIVERSITÄT DRESDEN



Plausibility criteria I

A necessary condition for completeness is that the following **plausibility conditions** are satisfied:

(1) Dependence of the acceleration on the own speed and existence of a desired speed v_0 :

$$\frac{\partial f(s, v, v_l)}{\partial v} < 0, \quad \lim_{s \to \infty} f(s, v_0, v_l) = 0$$

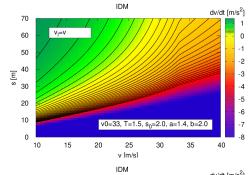
(2) Dependence on the gap with limiting case of no interaction:

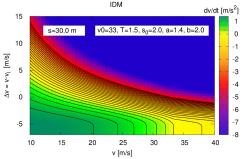
$$\frac{\partial f(s, v, v_l)}{\partial s} \ge 0, \quad \lim_{s \to \infty} \frac{\partial f(s, v, v_l)}{\partial s} = 0$$

(3) Dependence on the leader's speed:

$$\frac{\partial f(s, v, v_l)}{\partial v_l} \ge 0, \quad \lim_{s \to \infty} \frac{\partial f(s, v, v_l)}{\partial v_l} = 0, \quad \left| \frac{\partial f}{\partial v_l} \right| \le \left| \frac{\partial f}{\partial v_l} \right|$$

Plausibility criteria II: Steady-state relation





Steady-state speed-gap relation and existence of a minimum gap:

The steady-state speed $v_e(s)$ defined by $f(s,v_e(s),v_e(s))=0$ satisfies

$$v'_e(s) \ge 0, \lim_{s \to \infty} v_e(s) = v_0, \ v_e(s_0) = 0 \text{ for some } s_0 > 0$$

Express $v_e'(s)$ in terms of $\frac{\partial f}{\partial s}$, $\frac{\partial f}{\partial v}$, and $\frac{\partial f}{\partial v_l}$ and show that this condition follows from (1) and (2)

$$f(s_e, v, v) = 0$$

$$\Rightarrow 0 = df$$

$$= \frac{\partial f}{\partial s} ds + \frac{\partial f}{\partial v} dv + \frac{\partial f}{\partial v_l} dv$$

$$= \left(\frac{\partial f}{\partial s} + \frac{\partial f}{\partial v} v'_e(s) + \frac{\partial f}{\partial v_l} v'_e(s)\right) ds$$

$$\begin{split} &\Rightarrow v_e'(s) = -\frac{\partial f}{\partial s} / \left(\frac{\partial f}{\partial v} + \frac{\partial f}{\partial v_l} \right) \\ &\geq 0 \text{ since } \frac{\partial f}{\partial s} \geq 0, \ \frac{\partial f}{\partial v} < 0, \ \text{and } \left| \frac{\partial f}{\partial v_l} \right| \leq \left| \frac{\partial f}{\partial v} \right| \\ &\text{and } v_e(s \to \infty) = v_0 \text{ from (1)} \end{split}$$

Some Examples of Elementary Car-Following Models

- Not really useful for actually simulating traffic flow
- but very good for showing the basic principles,
- also serve as basis for the more sophisticated ones

- 8.4 Optimal Velocity Model
- 8.5 Full Velocity Difference Model
- 8.6 Newell's Car-Following Model
- 8.7 Car-Following Cellular Automata

8.4 Optimal Velocity Model (OVM)

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{v_{\mathrm{opt}}(s) - v}{\tau} \quad \text{Optimal Velocity Model}$$

Whole model class parameterized by the optimal-velocity function $v_{\sf opt}(s)$, e.g.,

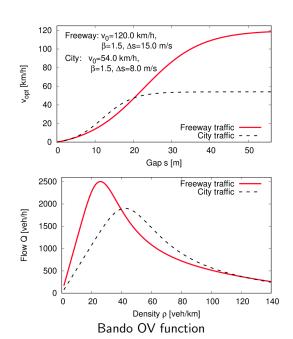
Original OVM function by Bando et al:

$$v_{\text{opt}}(s) = v_0 \frac{\tanh\left(\frac{s}{\Delta s} - \beta\right) + \tanh\beta}{1 + \tanh\beta}$$

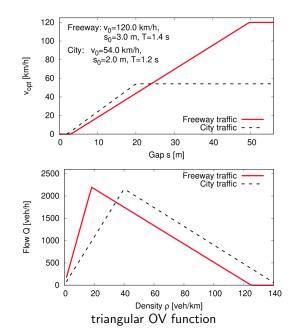
OVM function corresponding to the triangular FD:

$$v_{\mathsf{opt}}(s) = \max\left[0, \ \min\left(v_0, \frac{s - s_0}{T}\right)\right]$$

OV functions



TECHNISCHE UNIVERSITÄT DRESDEN



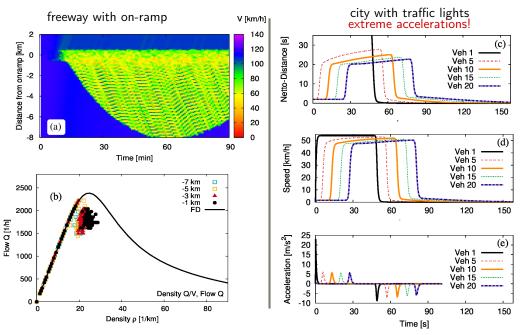
Properties of the Optimal Velocity Model (OVM)

- lacktriangle The homogeneous-steady-state speed $v_e(s)$ is given by the OV function
- ► Technically, the model *marginally* satisfies all plausibility conditions (no sensitivity to the leader's speed) but results in unrealistic accelerations, or crashes, or both
- **Desides** Besides the parameters of the OV function, the OVM has the **speed relaxation time** τ as additional parameter:
 - ▶ The more responsive the driver, the lower τ ,
 - the higher τ , the more instabilities

Parameter	Typical Value Highway	Typical Value City Traffic
Adaptation time $ au$	0.65 s	0.65 s
Desired speed v_0	120 km/h	54 km/h
Transition width Δs (Bando FD)	15 m	8 m
Form factor β (Bando FD)	1.5	1.5
Time gap T (triangular FD)	1.4 s	1.2 s
Minimum distance gap s_0 (triangular FD)	3 m	2 m

Factsheet of the Optimal Velocity Model (OVM)

TECHNISCHE UNIVERSITÄT DRESDEN



OVM questions $f_{\mathsf{OVM}}(s,v,v_l) = (v_{\mathsf{opt}}(s)-v)/ au$

OV functions:
$$v_{\text{opt}}^{\text{Bando}} = v_0 \frac{\tanh\left(\frac{s}{\Delta s} - \beta\right) + \tanh\beta}{1 + \tanh\beta}, \quad v_{\text{opt}}^{\text{triang}} = \max\left[0, \min\left(v_0, \frac{s - s_0}{T}\right)\right]$$

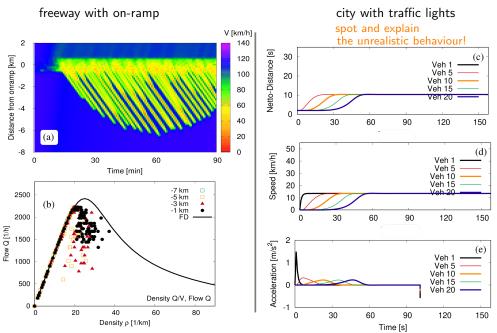
- ? Show that the steady state speed $v_e(s)$ is given by the optimal speed.
- ! Steady State $v=v_l, \ \frac{\mathrm{d}v}{\mathrm{d}t}=0$: $0=(v_{\mathrm{opt}}(s)-v)/\tau$. Since the speed adaptation time $\tau>0$, we have $v=v_e(s)=v_{\mathrm{opt}}(s)$
- ? Check the plausibility conditions
- ! (1) $\frac{\mathrm{d}f}{\mathrm{d}v} = -1/\tau < 0 \text{ OK}$
 - (2) $\frac{\mathrm{d}f}{\mathrm{d}s} = v_e'(s)/\tau \ge 0$ if $v_e'(s) \ge 0$ OK
 - (3) $\frac{\mathrm{d}f}{\mathrm{d}v_l} = 0$ marginally OK
 - (4a) Bando OV function: $v'_{\text{opt}}(s) \ge 0$ since $\tanh(.) \ge 0$, $v_{\text{opt}}(s \to \infty) = v_0$, $v_{\text{opt}}(0) = 0$ (OK)
 - (4b) triangular OV function: $v_{\rm opt}'(s)=1/T$ or =0, $v_{\rm opt}(s\to\infty)=v_0$, $v_{\rm opt}(s_0)=0$ OK
- ? show that the "triangular" OV function in fact leads to the triangular FD
- ! triangular FD: $Q(\rho) = \rho v_{\text{opt}}(1/\rho l s_0) = \rho \max[0, \min(v_0, (1/\rho l)/T)] = \max[0, \min(v_0\rho, 1/T(1-\rho l))] = \max[0, \min(v_0\rho, 1/T(1-\rho/\rho_{\text{max}}))]$

8.5. Full Velocity Difference Model (FVDM)

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{v_{\mathrm{opt}}(s) - v}{\tau} + \gamma(v_l - v) \quad \text{Full Velocity Difference Model}$$

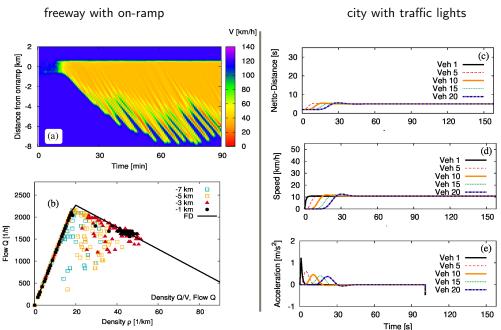
- The FVDM is the optimal-velocity model with an additional sensitivity to the relative speed $v-v_l$ to the leader
- \blacktriangleright The additional sensitivity parameter γ has values of the order of $0.5\,\mathrm{s}^{-1}$
- lacktriangle As in the OVM, the homogeneous steady state speed $v_e(s) = v_{\sf opt}(s)$
- As a pure car-following model, the FVDM behaves more realistically. However, in contrast to the OVM, it is *not* complete Why? For $s \to \infty$, the FVDM acceleration still depends strongly on v_l thereby violating plausibility requirement (3b) $\lim_{s\to\infty} \frac{\partial f}{\partial v_l} = 0$: There is no transition from car-following to free traffic

Factsheet of Bando's Full Velocity Difference Model (FVDM)



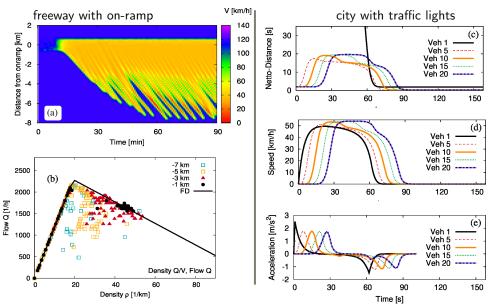
TECHNISCHE UNIVERSITÄT DRESDEN

Factsheet of the FVDM with triangular FD



Factsheet of the modified FVDM with triangular FD

$$f(s, v, v_l) = (v_{\text{opt}}^{\text{triang}} - v) / \tau + \gamma(v_l - v) \min(1, v_0 T / s)$$



8.6 Newell's Car-Following Model

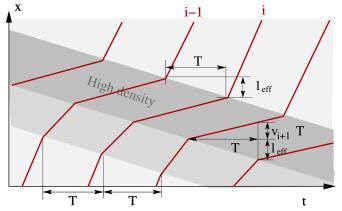
$$v(t+T) = v_{\text{opt}}(s(t)), \quad v_{\text{opt}}(s) = \min\left(v_0, \frac{s}{T}\right)$$
 Newell's Model

The OV relation can also be written in terms of the distance headway $\tilde{v}_{\rm opt}(d) = v_{\rm opt}(s+l_{\rm eff})$ and represents the triangular FD (check!)

$$Q(\rho) = \min \left[V_0 \rho, \frac{1}{T} \left(1 - \rho l_{\text{eff}} \right) \right]$$

- Three parameters: effective vehicle length $l_{\rm eff}$ (incl minimum gap s_0), reaction time T, and desired speed v_0
- ightharpoonup T is not only the reaction time but also the time gap, the speed adaptation time, and the numerical update timestep (check!)

Newell's car-following model: properties

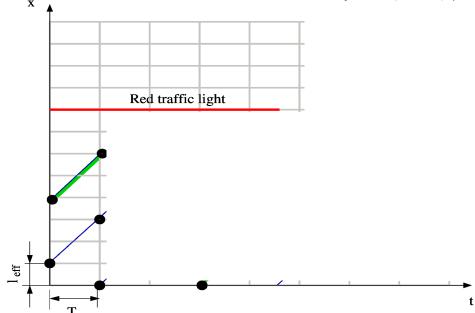


Constant wave speed w by considering the start of a queue of standing vehicles (distance headway $d = l_{\text{eff}}$) or simply by the general expression $w = Q'_{\text{cong}}(\rho)$ from the congested part of the FD:

$$w = -l_{\rm eff}/T$$

This means that, in the car-following regime $(s/T < v_0)$, the follower adopts the leader's speed one "reaction time" T ago and proceeds by the gap value one "reaction time" T ago: $v(t+T) = v_l(t), \quad x(t+T) = x_l(t) - l_{\text{eff}}$

Numerics of Newell's micromodel: iterated map for $v_0=2l_{ m eff}/T$



8.7. Car-Following Cellular Automata (CA)

Cellular automata (CA) describe all aspects of dynamical systems by using (generally small) integers:

- Space is subdicided into cells
- lacktriangle Time is subdivided into time steps Δt
- > State variables are multiplies of the natural unit, e.g., speed in cells/ Δt and accelerations in cells/ $(\Delta t)^2$
- In the **Euler** or occupation number representation the dynamical unit is a cell that can be occupied (1) or not (0) [here, the maximum speed $v_0=1$ and we have redefined the state $-1 \to 0$ for empty, and 0 or $1 \to 1$ for occupied with speed 0 or 1 to match the historic example] such as in the famous Rule 184 (= $2^7 + 2^5 + 2^4 + 2^3$) (try to understand it):

current local pattern	7=	6=	5=	4=	3=	2=	1=	0=
	111	110	101	100	011	010	001	000
new state of the center cell	1	0	1	1	1	0	0	0

► In the Lagrange representation a CA looks like a discretized car-following model such as the Nagel-Schreckenberg Model below

Nagel-Schreckenberg Model (NSM) and the Barlovic Model

These are **Stochastic** CAs in the Lagrange representation, i.e., the relevant unit is a vehicle i rather than a cell k:

1. Deterministic acceleration as a function of the speed v_i , desired speed v_0 and gap (number of empty cells) g_i :

$$v_i^*(t+1) = \min (v_i(t) + 1, v_0, g_i)$$

2. Dawdling by not accelerating, or braking more than necessary, with a certain dawdling probability p:

$$v_i(t+1) = \begin{cases} \max\left(v_i^*(t+1) - 1, \ 0\right) & \text{with probability } p, \\ v_i^*(t+1) & \text{otherwise.} \end{cases}$$

In the Barlovic model, the "slow-to-start" rule applies, i.e., the probability p_0 for standing vehicles $(v_i(t)=0)$ is higher than p for driving vehicles

▶ *Driving* by moving $v_i(t+1)$ cells forward:

$$x_i(t+1) = x_i(t) + v_i(t+1).$$

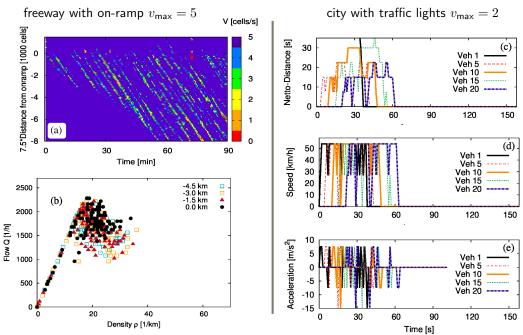
Verify that $Rule\ 184$ corresponds to the determinstic NSM with $v_0=1$ Then, a car moves by one cell whenever the new cell is free. Compare with the Rule-184 table

How the NSM works ($v_0 = 2$)

Parameter	Typ. Highway		Гур. Value City
Cell length $\Delta x_{\text{phys}} = l_{\text{eff}}$	7.5 m	7	7.5 m
Time step Δt_{phys}	1s	1	Ls
Desired speed v_0	5	2	2
Dawdling probability p	0.2	().1
Prob. p_0 when stopped (Barlovic)	0.4	().2

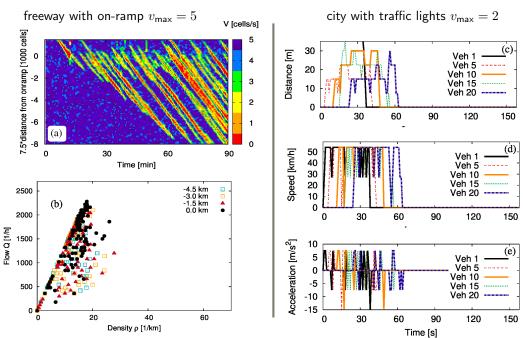
Factsheet of the Nagel-Schreckenberg Model (NSM)

TECHNISCHE UNIVERSITÄT DRESOEN



Factsheet of the CA model of Barlovic

TECHNISCHE UNIVERSITÄT DRESOEN



Factsheet of the CA model of Kerner

There are many more "refined" CAs, e.g., the KCA with a cell size of only $0.5\,\mathrm{m}$

TECHNISCHE UNIVERSITÄT DRESOEN

