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7.1 General Mathematical Form

In contrast to the LWR models, second-order models have their own dynamic equation for the
dynamic speed. They come in two forms: local and nonlocal.

dV (x, t)

dt
=

(
∂

∂t
+ V

∂

∂x

)
V +

1

ρ

∂P (ρ)

∂x
= A[ρ, V ] local formulation

I
(
∂
∂t + V ∂

∂x

)
V (x, t) is the acceleration from the driver’s point of view (Lagrangian

formulation)

I The “traffic pressure” P (ρ) is a statistical effect caused by speed variations

I The acceleration functional describes the aggregated vehicle accelerations:

A[ρ(x, t), V (x, t)] = floc

(
ρ, V,

∂ρ

∂x
,
∂V

∂x
,
∂2V

∂x2
, ...

)

I the derivatives of the pressure and acceleration terms are crucial since, without them, this
model class would be unconditionally unstable
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Acceleration in the Lagrangian view

Derive the expression for dV
dt by looking at the speed change

dV = ∂V
∂t

dt + ∂V
∂x

dx = ∂V
∂t

dt + ∂V
∂x

dx
dt

dt =
(
∂V
∂t

+ V ∂V
∂x

)
dt

1. changes of the speed field ∂V
∂t

at a fixed location,

2. changes of the speed field V ∂V
∂x

when moving along the spatially varying field
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The “pressure term”: a purely statistical effect

I Neither the red nor the blue vehicles accelerate but the red vehicles are twice as fast as the
blue ones all the time

I Macroscopically, the local density and speed in the hatched region of length ∆x is relevant.
At t = 0, we have V (t = 0) = V1+V2

2

I While being advected at speed V (advection term!), the faster (slower) cars enter the
hatched area from the upstream (downstream) end.

I Due to the density gradient, more faster vehicles entering than leaving the region, less slower
vehicles entering than leaving ⇒ macroscopic local speed changes if there is both finite
speed variance Θ and a density gradient (here V (t1) = (2V2 + V1)/3 > V (0))
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True acceleration I: relaxation

The relaxation term frelax = (Ve(ρ)− V )/τ realizes a desire of the drivers to “come
back” to the fundamental diagram in the relaxation time τ
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True acceleration II: anticipation

The anticipation terms fantic = γ1
∂ρ

∂x
+ γ2

∂V

∂x
anticipate the situation at some

forward location Give the expression when anticipating the relaxation process at a distance 1/ρ

frelax + fantic = (Ve(ρa)− V )/τ where Ve(ρa) = Ve(ρ) + V ′
e (ρ) ∂ρ

∂x
1
ρ
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True acceleration III: diffusion

I The formation mechanism of shock waves/fronts (see last lecture) is hardly
suppressed by the anticipation mechanism

I However, in second-order models, shock waves have unfavourable numeric properties

I Therefore, an ad-hoc term fdiffus = Dv
∂2V

∂x2
is often added.

I Another possibility is using nonlocal models as presented next
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Nonlocal second-order models
Instead of spatial derivatives, nonlocal models introduce anticipation explicitely into the
acceleration function:

∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂P (ρ)

∂x
= fnonloc(ρ, V, ρa, Va)

where
ρa = ρ(xa, t), Va = V (xa, t)

with xa > x an advanced location (model-dependent forward-looking anticipation), e.g.,
xa − x = 1/ρ or = V T

I Nonlocal models contain forward-looking explicitly, so upwind numerical differentiation (using
only upstream information) is always applicable. why? Because downstream information is
contained in the anticipated position xa

I The “traffic pressure” P (ρ) describes the same kinematic-statistical effect as in local models

I The right-hand side can be written as a nonlocal relaxation:

fnonloc(ρ, V, ρa, Va) =
V ∗e (ρ, V, ρa, Va)− V

τ
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Relaxation and nonlocal anticipation

I The local relaxation is the same as in local models, f = (V (ρ)− V )/τ .

I The nonlocal relaxation is just fantic = (V (ρa)− V )/τ . No further approximation via

Taylor series (V (ρa) = V (ρ) + V ′(ρ) ∂ρ∂x (xa − x)) needed.
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7.2 Plausibility Criteria

Introduce the (commonly used) abbreviations Vx ≡ ∂V
∂x , Vxx ≡ ∂2V

∂x2 , ρx = ∂ρ
∂x etc. to rewrite local

and nonlocal models (pressure term integrated into f):

∂V

∂t
+ V

∂V

∂x
=

{
floc (ρ, V, ρx, Vx, ρxx, ...) local models

fnonloc (ρ, V, ρa, Va) nonlocal models

1. Response to local speed: ∂floc

∂V < 0, ∂fnonloc

∂V < 0 Why?

2. Response to local density: ∂floc

∂ρ ≤ 0, ∂fnonloc

∂ρ ≤ 0 Why?

3. Homogeneous steady state: The implicit relations

0 = floc

(
ρ, Ve(ρ), 0, 0, ...

)
, 0 = fnonloc

(
ρ, Ve(ρ), ρ, Ve(ρ)

)
leads to a steady-state speed function obeying

Ve(0) = V0 = max, V ′e (ρ) ≤ 0, Ve(ρmax) = 0

Why? The steady state is valid for all ρ. Hence 0 = df
dρ

= ∂f
∂ρ

+ ∂f
∂V
V ′
e (ρ), so

V ′
e (ρ) = − ∂f

∂ρ
/( ∂f
∂V

) ≤ 0. The maximum V0 is reached at zero density, the value Ve(0) at maximum

density
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7.2 Plausibility Criteria II

4. Response to density and speed gradients:

∂floc

∂ρx
≤ 0,

∂floc

∂Vx
≥ 0

“Decelerate if the local density is increasing or the local speed is decreasing”

5. Response to nonlocalities:

∂fnonloc

∂ρa
≤ 0,

∂fnonloc

∂Va
≥ 0

“Decelerate if the density ahead is larger or the speed ahead is smaller”
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7.3 Ramp Terms

I The inflow/outflow of vehicles from/to ramps is modelled by the ramp term
ν(x) = Qrmp/Lrmp of the density equation. Why? Because the conservation of the vehicles is always valid

I Inflowing/outflowing vehicles that are slower than the mainroad vehicles when
entering/leaving cause an additional ramp term Armp in the speed equation

I To derive it, we need to consider the rate of change of the local speed in the grey box in
above figure
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Derivation of the on-ramp term

Rate of local speed change in the gray box of width ∆x
(E(.) denotes the expectation value):

Armp =
d

dt

(
E (vα)

)
=

d

dt

 1

n(t)

n(t)∑
i=1

vi

 .

Assuming no acceleration of the mainroad and ramp vehicles (why?), the expectation value
changes only due to vehicles entering the ramp (the off-ramp case leads to the same term if the
vehicles brake on the mainroad to Vrmp)

n = ρL∆x,
dn

dt
= Qrmp

∆x

Lrmp
,

n(t)∑
i=1

vi = nV,
d

dt

(
n∑
i=1

vi

)
= Vrmp

dn

dt

⇒ Armp = − 1

n2

(
dn

dt

)
nV +

1

n
Vrmp

dn

dt

=
Vrmp − V

n

dn

dt
n=ρL∆x

=
Vrmp − V
ρLLrmp

Qrmp

= ν

(
Vrmp − V

ρ

)
, ν =

Qrmp

LLrmp
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7.4 Specific Models I: Payne’s Model

∂V

∂t
+ V

∂V

∂x
=
Ve(ρ)− V

τ
+
V ′e (ρ)

2ρτ

∂ρ

∂x
Payne’s model

I Homogeneous steady state: V (ρ) = Ve(ρ) where Ve(ρ) can be chosen as in the LWR model
(plausibility criteria?)

I The density gradient comes from the derivation from a simple microscopic model, the
Optimal Velocity Model (OVM) dvi / dt = (vopt(s)− v)/τ :

vopt(s)→ Ve(ρ(x+
∆x

2
, t)) ≈ Ve(ρ(x, t)) + V ′e

∂ρ

∂x

∆x

2
= Ve +

V ′e
2ρ

∂ρ

∂x

I The density gradient can also be written as a pressure term −1/ρ∂P∂x with
P = (V0 − Ve(ρ))/(2τ)

I Only one parameter besides those in Ve(ρ): Speed relaxation time τ of the order of 10 s
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II: Kerner-Konhäuser Model

∂V

∂t
+ V

∂V

∂x
=
Ve(ρ)− V

τ
− c2

0

ρ

∂ρ

∂x
+
η

ρ

∂2V

∂x2
KK model

I Heuristic model; no microscopic derivation; analogies to 1d compressible gas

I Same homogeneous steady state as Payne’s model: V = Ve(ρ)

I The density gradient term is similar as in Payne’s model and can be written in terms
of a traffic pressure P = c2

0ρ

I Additional “speed diffusion term” to avoid shock waves

I Three parameters besides that in Ve(ρ) (typical values):
I Relaxation time τ (10-30 s)
I Sonic speed c0 (15 m/s)
I Speed diffusion factor η (150 m/s)
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On-ramp simulation of the KK model

I Used Speed density relation (V0 = 120 km/h):

Ve(ρ) = V0
1− ρ/ρmax

1 + 200(ρ/ρmax)4

I The higher τ , the more prone to flow instabilities. Here, τ = 30 s
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III: Aw-Rascle Model

∂

∂t
(V + p(ρ)) + V

∂

∂x
(V + p(ρ)) = 0 Aw-Rascle model

I Mathematicians love this model because it can be reformulated in totally
conservative form allowing some analytic solutions:

∂

∂t
(ρ(V + p(ρ))) +

∂

∂x
(ρV (V + p(ρ))) = 0

I p(ρ) (not the traffic pressure!) increases with speed. Often, p(ρ) = (V0 − Ve(ρ)) is
used (ARZ model)

I Its time derivative is somewhat peculiar. Using the (always valid!) continuity
equation, it can be written as

∂V

∂t
+ V

∂V

∂x
= −ρp′(ρ)

dV

dx

I This model does not have a FD (why?). Fur use in traffic flow simulation, a
relaxation term (Ve(ρ)− V )/τ must be added
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IV: Gas-Kinetic Based Traffic-flow (GKT) Model

∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂P (ρ)

∂x
=
V ∗e (ρ, V, ρa, Va)− V

τ
GKT Model

Nonlocal model with anticipated locations: xa = x+ γV T

From the gas-kinetic derivation comes the following:

I “Traffic pressure” P (ρ) = ρα(ρ)V 2
e , variation coefficient

√
α(ρ) from the data

I Target (generally not steady-state) speed

V ∗e (ρ, V, ρa, Va) = V0

[
1− α(ρ)

α(ρmax)

(
ρaV T

1− ρa/ρmax

)2

B

(
V − Va√
2α(ρ)V

)]

I “Boltzmann factor” (see a statistical derivation)

B(x) = 2
[
xfN (x) + (1 + x2)Φ(x)

]
(notice B(0) = 1)
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Model IV: Properties of the GKT Model

I In spite of its complexity, it is numerically stable and can be simulated efficiently

I No explicit FD, but can be calculated implicitly:

V ∗e (ρ, V, ρ, V ) = V,

V0 − V =
α(ρ)

α(ρmax)

(
ρaV T

1− ρa/ρmax

)2

⇒ quadratic equation for V = Ve(ρ)

Parameter Typical Value Typical Value
Highway City Traffic

Desired speed V0 120 km/h 50 km/h
Desired time gap T 1.2 s 1.2 s

Maximum Density ρmax 160 vehicles/km 160 vehicles/km
Speed adaptation time τ 20 s 8 s

Anticipation factor γ 1.2 1.0
variation coefficient

√
α(ρ) from data (around 0.1)
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Off-ramp-on-ramp simulation of the GKT model

I Off-ramp at x = 14 km, on-ramp at x = 16 km
I Solid line left image: GKT fundamental diagram
I Flow instabilities grow with increasing τ , decreasing V0, decreasing γ and decreasing

sensitivity α−1/2 (increasing speed variation coefficient)
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7.5 Numerics

Essential parts of the equations of second-order models are conservative:

I Conservation of the number of vehicles in the continuum equation

I Conservation of momentum at the left-hand side of the speed equation ⇒ take
account of this in the numerical solution!

In addition, there are source terms:

I Ramps or change of the number of lanes in the continuity equation,

I Vehicle accelerations or decelerations as well as ramp source terms in the speed
equation
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Conservation form of the speed equation:
the left-hand side

Because it is crucial for numerical accuracy to satisfy the conservation laws, reformulate
the velocity equation as a flow equation: Replace in the general local or nonlocal
formulation V by Q/ρ, apply the continuity equation to get rid of the appearing ∂ρ

∂t :

ρ (lhs.) = ρ

(
∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂P

∂x

)
=
∂(ρV )

∂t
− V ∂ρ

∂t
+ ρV

∂V

∂x
+
∂P

∂x
cont.
=

∂Q

∂t
+ V

∂Q

∂x
+Q

∂V

∂x
+
∂P

∂x

=
∂Q

∂t
+
∂(QV )

∂x
+
∂P

∂x

=
∂Q

∂t
+

∂

∂x

(
Q2

ρ
+ P

)
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Conservation form: right-hand side and result

I Everything that will become a complete derivative of x in this formulation should appear on
the left-hand side. This is also true for the diffusion term of the KK model becoming

− ∂
∂x

(
η ∂Q/ρ∂x

)
I rhs: just redefine the remaining parts of ρfloc(ρ, V, ...) or ρfnonloc(ρ, V, ...) (including ramp

terms) to be the source S(ρ,Q, ρx, Qxρa, Qa) (there should be as few gradients as possible)

Together with the continuity equation with bottlenecks, the general result is

∂ρ
∂t + ∂Q

∂x = νrmp − Q
I

dI
dx

∂Q
∂t + ∂

∂x

(
Q2

ρ + P − η ∂
∂x

(
Q
ρ

))
= S(ρ,Q, ρx, Qx, ρa, Qa)

With u =

(
ρ
Q

)
, f(u) =

(
Q

Q2

ρ
+ P − η...

)
, s(u) =

(
νrmp − Q

I
dI
dx

S

)
:

∂u

∂t
+
∂ f(u)

∂x
= s(u)
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Upwind and McCormack Scheme

I The upwind method approximates ∂f
∂x by asymmetric first-order finite differences using

upstream information (as in the LWR model for free traffic):

un+1
k = unk −

∆t

∆x
(fnk − fnk−1) + ∆t snk

It is useful for nonlocal models since the anticipated variables ρa and Va in snk ensure using
the upstream information

I The McCormack method includes two steps:

1. calculating a predictor using upwind finite differences,
2. calculating a corrector using downwind differences:

ũn+1
k = unk − ∆t

∆x (fnk − fnk−1) + ∆t snk predictor

un+1
k = 1

2

(
ũn+1
k + unk − ∆t

∆x (f̃
n+1

k+1 − f̃
n+1

k ) + ∆t s̃n+1
k

)
corrector
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Approximating Nonlocalities

Assume you want to approximate (ρa)
n
k for cell k (position x = k∆x) at time t = n∆t:

I Given the spatial anticipation horizon sa, determine the number K of integer cells
this corresponds to:

K =

⌊
sa

∆x

⌋
.

(typical, K = 0 or =1)

I do a piecewise linear interpolation:

(ρa)nk ≈ ρnk+K +
(
ρnk+K+1 − ρnk+K

) ( sa

∆x
−K

)
I Near the downstream boundary, just use the most downstream information available



Traffic Flow Dynamics 7. Macroscoic Second-Order Models 7.5 Numerics

Numerical Instabilities

I Numerical instabilities have nothing to with real flow instabilities that are possible in
second-order models

I Compared to the LWR numerics, there are more types of possible instabilities:
I convection instabilities as in the LWR
I diffusive instabilities
I relaxational instabilities
I nonlinear instabilities

I An analysis is only possible in the linear case → linearize the continuity and speed
equations in the conservative form (w: deviations in ρ and Q)

∂w

∂t
+ C · ∂w

∂x
= L ·w

C : convection matrix; L : relaxation matrix
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Convection instabilities

I As in the LWR, not any signal may travel through more than one cell in one timestep.

I Two independent fields → two signal velocities given by the eigenvalues of the convection
matrix

C =

(
0 1

−V 2 + ∂P
∂ρ 2V + ∂P

∂Q

)

I Calculation of the eigenvalues c1/2 is easy if (as often) ∂P
∂Q = 0 (and always ∂P

∂ρ ≥ 0)

c1/2 = V ±

√
∂P

∂ρ

I Convection instability is avoided (for the upwind and McCormack methods) if the first
Courant-Friedrichs-Lévy (CFL) condition

∆t <
∆x

max(|c1|, |c2|)

is satisfied for all possible V and ρ
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Diffusive instabilities
Just consider the KK model, the only one with a diffusion term. In non-conservative form (no
change when using the conservative form) we have with ν = η/ρ:

dV

dt
= ...+ ν

∂2V

∂x2
≈ ...+ ν

V nki1 − 2V nk + V nk−1

∆x2

Euler update:

V n+1
k ≈ V nk + ν∆t

V nk+1 − 2V nk + V nk−1

∆x2
+ other terms

How would oscillating speed data V nk = Ve +A(−1)k be updated?
show that, in the next step, we would have

V n+1
k = Ve +A

(
1− 4ν∆t

(∆x)2

)
(−1)k.

Result: The second CFL condition

∆t <
(∆x)2

2ν

must be satisfied for all possible V and ρ (ν may depend on ρ or V )



Traffic Flow Dynamics 7. Macroscoic Second-Order Models 7.5 Numerics

Relaxational instabilities for the Euler update

I For the relaxational instabilities, we need the eigenvalues of the matrix L . Without road
inhomogeneities, we have

L =

(
0 0

∂S
∂ρ

∂S
∂Q

)
which has the eigenvalues λ1 = 0 (plausible?) and λ2 = ∂S

∂Q

I Obviously, λ2 > 0 means real instability (“the faster I am with respect to the steady-state
speed, the more I accelerate”). However, numerical instabilities arise for λ2 < 0 if
1 + ∆tλ2 < −1 (why?):

∆t < 2/
∣∣∣ ∂S∂Q ∣∣∣ Relaxational stability criterion

∆t < 1/
∣∣∣ ∂S∂Q ∣∣∣ no spurious oscillations

I For Payne’s model and the KKL model, we have the source term

S =
Qe(ρ)−Q

τ
⇒

∂S

∂Q
= −1/τ ⇒ ∆t <

2

τ

I For the GKT model, relaxational instabilities become a problem near ρmax since then | ∂S
∂Q
| becomes large
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Nonlinear instabilities

I All of the above needs linearity for its derivation

I Usually, we are nonlinear (e.g., traffic waves). You need to just look what happens ;-)

I However, the linear limits give a good guess and their negation at least is a sufficient
criterion for instabilities!
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Numerical diffusion for the Euler update

Numerical instabilities are the worst but also numerical diffusion is unwanted: To analyse,
let’s assume that

I the exact state u(x, t) is given at time t = n∆t and the grid points unk are exact as
well,

I the flow-conservative part f(u) is at least twice differentiable in x and t,

I the convective information flow is in driving direction, so we use upswind finite
differences,

I the second-order model is stripped to the bare minimum ut + f(u) = 0 with

ut = ∂u
∂t (and later on ux = ∂u

∂x , uxx = ∂2u
∂x2 )
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Numerical diffusion for the Euler update (ctnd)

Let’s develop both the true solution and the upwind approximation for u(t+ ∆t, k∆x) to second

order in ∆x and ∆t:

True solution:

u(t+ ∆t, k∆x) ≈ u + ut∆t+
1

2
utt(∆t)

2 = u− C ∆t ux +
1

2
C 2(∆t)2 uxx

where Cij = ∂fi(t)
∂uj

is the matrix of the partial derivatives (Hesse matrix) already mentioned at

the convection instabilities.

Upwind approximation: Typically, the eigenvalue of C with the largest absolute value is
positive (information direction in driving direction) ⇒ analyze upwind finite differences (always
used in the GKT model):

un+1
k = unk − C

unk − unk−1

∆x
∆t

≈ u− C ∆t

∆x

(
u− u + ux∆x− 1

2
uxx(∆x)2

)
≈ u− C ∆tux +

C

2
∆t∆xuxx
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Numerical diffusion for the Euler update (ctnd)

The numerical diffusion is just the difference between the numerical and true solution in
second order:

un+1
k − u(x, t+ ∆t)

∆t
=

1

2
C ∆x

(
1 − C ∆t

∆x

)
uxx

!
= Dnum uxx

For c1/2 < 0, we need to use the downwind method leading to a sign change in the first
term but the product is unchanged.

In summary, with the right upwind/downwind differentiation to avoid numerical
instabilities, we have the numerical diffusion

Dnum =
∆x

2
C

(
1 − ∆t

∆x
C

)
Remarkable: The numerical diffusion becomes very small just at the first CFL limit
∆t = ∆x

max(|c1|,|c2|) is reached
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