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5.2. Basic Macroscopic Quantities for Lane-Based Traffic

Three categories of macroscopic quantities:

I per lane: ρl, Ql, Vl
I total: ρtot, Qtot

I effective/average: ρ, Q, V
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Extensive and intensive quantities

I Extensive quantities (increasing with vehicle number, here ρ and Q) will just
added/averaged normally to obtain total and effective values, respectively:

ρtot =

L∑
l=1

ρl, ρ =
1

L

L∑
l=1

ρl =
ρtot

L
, Q likewise

I Intensive quantities such as macroscopic speed V or speed variance cannot be added
sensibly ⇒ no “total” quantity. The lane averaging may also be more tricky.

? Determine V in two ways such that the macroscopic hydrodynamic relation Q = ρV
and Qtot = V ρtot holds. Identify the results with weighted arithmetic and harmonic
averages

! First, because the average and total extensive quantities only differ by the lane number L, we have

Q/ρ = Qtot/ρtot. We calculate just the ratio of the total quantities

I V = Qtot

ρtot =
∑
l ρlVl

ρtot =
∑
l wlρVl, ⇒ arithmetic average with weighting wlρ = ρl

ρtot

I V −1 = ρtot

Qtot =
∑
l ρl

Qtot =

∑
l
Ql
Vl

Qtot =
∑
l wlQ

1
Vl
, ⇒ harmonic average with weighting wlQ = Ql

Qtot
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5.3. Basic Directed 2d Traffic

mixed non-lane based traffic flow in India
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Example II: Hajj in Mekka



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.3. Directed Non-Lane-Based Traffic

Traffic signs at the Hajj
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Example III: Loveparade
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Example IV: Vasaloppet
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Basic macroscopic 2d quantities

I Density ρ(x, y, t) = ρ(x, t) pedestrians per square meter [ped/m2]

I Flow density J(x, t), J(x, t) = |J(x, t)| pedestrian flow per meter cross section
[ped/(ms)] ,

I Local velocity and speed V (x, t) = J/ρ, V (x, t) = J/ρ [m/s].

Essentially, the flow density is the limit of the flow per lane divided by the lane width for a
multi-lane road with the lane number going to infinity at constant width W :

∑
l →

∫
dy
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Effective 1d quantities

I 1d Density ρ1d(x, t) =
∫W/2
y=−W/w ρ(x, y, t) dy ≈Wρ(x, t) [ped./m]

I Total flow Q(x, t) =
∫W/2
y=−W/w J(x, y, t) dy ≈WJ(x, t) [ped/s]

I Local speed V (x, t) = Q(x, t)/ρ1d(x, t) [m/s]



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.3. Directed Non-Lane-Based Traffic

Effective 1d quantities

I 1d Density ρ1d(x, t) =
∫W/2
y=−W/w ρ(x, y, t) dy ≈Wρ(x, t) [ped./m]

I Total flow Q(x, t) =
∫W/2
y=−W/w J(x, y, t) dy ≈WJ(x, t) [ped/s]

I Local speed V (x, t) = Q(x, t)/ρ1d(x, t) [m/s]



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.3. Directed Non-Lane-Based Traffic

Effective 1d quantities

I 1d Density ρ1d(x, t) =
∫W/2
y=−W/w ρ(x, y, t) dy ≈Wρ(x, t) [ped./m]

I Total flow Q(x, t) =
∫W/2
y=−W/w J(x, y, t) dy ≈WJ(x, t) [ped/s]

I Local speed V (x, t) = Q(x, t)/ρ1d(x, t) [m/s]



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.4. Traffic Stream Models

5.4. Traffic Stream Models

a Traffic Stream Model is just a fixed relation between two of the three basic
macroscopic quantities local density ρ, flow Q, and local speed V .

The early days of traffic data:
Greenshields (1935)

Greenshield’s relation: V (ρ) = V0

(
1− ρ

ρmax

)
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Flow-density data and fundamental diagram

I The traffic-stream relation Q(ρ) is called the fundamental diagram

I It can be estimated by flow-density data taking care of the systematic errors

? How would the Greenshields fundamental diagram look like? Q(ρ) = V0 ρ
(
1 − ρ

ρmax

)
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“Two out of three” relations

Together with the basic relation Q = ρV ,
a single traffic stream relation fixes all
three relations Q(ρ), V (ρ), and Q(V )
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Triangular fundamental diagram (FD)

Q(ρ) = min

[
V0ρ,

1

T

(
1− ρ

ρmax

)]
“free”

branch
“congested”

branch

? Calculate the theoretical capacity and the density “at capacity”
Qmax = V0ρc at ρc = 1/(V0T + 1/ρmax)

? Discuss the model parameters V0, T , and ρmax
V0: desired speed, ρmax: maximum density, T : Desired time gap following since gap
s = (1/ρ− 1/ρmax)
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Fundamental diagram for directed 2d traffic
Often, the simplest Greenshields FD for the flow density J as a function of the 2d density
ρ is not too bad (only for fast pedestrians such as runners in sporting events, an
asymmetric triangular fundamental diagram is better):

J(ρ) = V0ρ

(
1− ρ

ρmax

)
Going from 2d to effective 1d:

Assume a square grid for the pedestrian positions: longitudinal distance ∆xi=lateral “lane
width” ∆W =

√
1/ρ:

I several “single files” in parallel of width ∆W

I 1d-density of a single file: ρ1d = ρ∆W =
√
ρ

I 1d-flow of this single file: Q = J∆W = J/
√
ρ = J/ρ1d

I 1d-FD

Q(ρ1d) = J((ρ1d)2)/ρ1d = V0ρ
1d

(
1− (ρ1d)2

(ρ1d
max)2

)
where ρ1d

max =
√
ρmax
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)
where ρ1d

max =
√
ρmax



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.4. Traffic Stream Models

Fundamental diagram for directed 2d traffic

? Discuss the differences of the two FDs

? Give the capacity of a 30 m wide approach corridor assuming unidirectional
pedestrian traffic flow and a Greenshields FD with parameters V0 = 1.2 m/s and
ρmax = 5 ped/m2 (see the left image)

! Specific capacity Jmax = V0ρmax/4 = 1.5 ped/m/s, capacity Qmax = WJmax = 45 ped/s or

about 160 000 pedestrians per hour.
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Weidmann FD

The popular Weidmann FD can be derived from microscopic social-force pedestrian flow models
(→ Lecture 11). Its speed-density traffic stream relation reads (with the published parameter
λ = −1.913 m−2 and the same V0 and ρmax)

J(ρ) = ρV (ρ), V (ρ) = V0

{
1− exp

[
−λ
(

1

ρ
− 1

ρmax

)]}
In contrast to the greenshields FD, it is not symmetric
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5.5. Hydrodynamic relation

I Number of vehicles in
blue-green box:

n
def
= ρ∆x

I Number of vehicles having
passed x0 during ∆t:

n
def
= Q∆t

I hydrodynamic relation:
n = ρ∆x = Q∆t ⇒
Q
ρ = ∆x

∆t
def
= V

Q = ρV hydrodynamic relation

? Give the form for unidirectional 2d traffic. J = ρV



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.5. Hydrodynamic relation

5.5. Hydrodynamic relation

I Number of vehicles in
blue-green box:

n
def
= ρ∆x

I Number of vehicles having
passed x0 during ∆t:

n
def
= Q∆t

I hydrodynamic relation:
n = ρ∆x = Q∆t ⇒
Q
ρ = ∆x

∆t
def
= V

Q = ρV hydrodynamic relation

? Give the form for unidirectional 2d traffic. J = ρV



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.5. Hydrodynamic relation

5.5. Hydrodynamic relation

I Number of vehicles in
blue-green box:

n
def
= ρ∆x

I Number of vehicles having
passed x0 during ∆t:

n
def
= Q∆t

I hydrodynamic relation:
n = ρ∆x = Q∆t ⇒
Q
ρ = ∆x

∆t
def
= V

Q = ρV hydrodynamic relation

? Give the form for unidirectional 2d traffic. J = ρV



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.5. Hydrodynamic relation

5.5. Hydrodynamic relation

I Number of vehicles in
blue-green box:

n
def
= ρ∆x

I Number of vehicles having
passed x0 during ∆t:

n
def
= Q∆t

I hydrodynamic relation:
n = ρ∆x = Q∆t ⇒
Q
ρ = ∆x

∆t
def
= V

Q = ρV hydrodynamic relation

? Give the form for unidirectional 2d traffic. J = ρV



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.5. Hydrodynamic relation

5.5. Hydrodynamic relation

I Number of vehicles in
blue-green box:

n
def
= ρ∆x

I Number of vehicles having
passed x0 during ∆t:

n
def
= Q∆t

I hydrodynamic relation:
n = ρ∆x = Q∆t ⇒
Q
ρ = ∆x

∆t
def
= V

Q = ρV hydrodynamic relation

? Give the form for unidirectional 2d traffic. J = ρV



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.5. Hydrodynamic relation

5.5. Hydrodynamic relation

I Number of vehicles in
blue-green box:

n
def
= ρ∆x

I Number of vehicles having
passed x0 during ∆t:

n
def
= Q∆t

I hydrodynamic relation:
n = ρ∆x = Q∆t ⇒
Q
ρ = ∆x

∆t
def
= V

Q = ρV hydrodynamic relation

? Give the form for unidirectional 2d traffic. J = ρV



Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.6. Continuity Equation

5.6. Continuity Equation

The continuity equation just reflects vehicle/pedestrian conservation and is therefore
always valid
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Continuity equation along a homogeneous road

dn

dt
= Qin −Qout = Qtot(x, t)−Qtot(x+ ∆x, t) ≈ −∂Q

tot

∂x
∆x

dn

dt
=

∂

∂t

(∫
ρtot dx

)
≈ ∂ρtot

∂t
∆x

⇒ Total quantities:
∂ρtot

∂t
+
∂Qtot

∂x
= 0

Effective quantities:
∂ρ

∂t
+
∂Q

∂x
= 0

Why is this continuity equation not valid for the lane quantities ρl, Ql, Vl?
Because there are source terms due to lane changing
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Continuity equation at ramp sections

dn

dt
= Qin −Qout +Qrmp = Qtot(x, t)−Qtot(x+ Lrmp, t) +Qrmp

≈ −∂Q
tot

∂x
Lrmp +Qrmp

dn

dt
=

∂

∂t

(∫
ρtot dx

)
≈ ∂ρtot

∂t
Lrmp

∂ρtot

∂t
+
∂Qtot

∂x
=
Qrmp

Lrmp

∂ρ

∂t
+
∂Q

∂x
= νrmp(x, t)

νrmp(x, t) =

{
Qrmp(t)
LLrmp

x at merging/diverging zones

0 otherwise
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Continuity equation at changes of the lane number

I Variable effective lane number L(x), here from L = 3→ 2 along the merging zone of one or
a few hundred meters:

I For the total quantities, the homogeneous continuity equation applies (why?):
∂ρtot

∂t + ∂Qtot

∂x = 0

I For the effective quantities, we get

∂ρ

∂t
+
∂Q

∂x
= −Q

L

dL

dx

I The source terms of the ramp and lane-closing scenarios can be added

? Why use the more complicated effective continuity equation?

? Try to understand the lane-closing source in terms of the on-ramp source (and the lane
opening in terms of an off-ramp)
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5.7. Coordinate Systems: Eulerian (Fixed Observer’s)
vs. Lagrangian (Driver’s) View

Continuity equation from the floating car (driver’s) perspective:

I Change of density: ∆ρ ≈
(
∂ρ
∂t + V ∂ρ

∂x

)
∆t from the driver’s perspective leads to the

total or convective time derivative: dρ
dt = ∂ρ

∂t + V (x, t) ∂ρ∂x

I Continuity equation in terms of the total derivative: dρ
dt = ∂ρ

∂t + V ∂ρ
∂x = −ρ∂V∂x .

Try to understand this intuitively!
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Homogeneous, stationary, and steady state

I Traffic flow is homogeneous if
∂F
∂x = 0 where F = ρ(x, t),
V (x, t), or any other macroscopic
field as a function of x and t

I Traffic flow is stationary or in the
steady state if ∂F

∂t = 0

Watch out: stationary !=
standing!

I Traffic flow is in the homogeneous steady state if ∂F
∂x = ∂F

∂t = dF
dt = 0. This is

assumed when formulating/deriving the fundamental diagram

? Give examples of stationary nonhomogeneous and nonstationary homogeneous states
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Traffic Flow Dynamics 5. Macroscopic Traffic Flow Models: General 5.7. Eulerian vs. Lagrangian view

Going Lagrangian I

I Advantage: homogeneous systems become easier to describe since the convective term is
eliminated

I Disadvantage: inhomogeneous systems become more complicated since ramps and other
infrastructure stuff are moving
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Going Lagrangian II

I Independent variable t: unchanged

I independent variable x: → real-valued vehicle index n (first vehicle has lowest index):

x→ n(x, t) = −
x∫
0

ρ(x′, 0) dx′+
t∫
0

Q(x, t′) dt′

I dependent variables speed V (x, t)→ v(n, t)

I dependent variables density becomes distance headway field ρ(x, t)→ 1/h(n, t) (name it
h instead of d to avoid confusion with differential operators)
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Lagrange Continuity equation for homogeneous roads:
derivation

I Lagrangian variables: ρ(x, t) = 1
h(n(x,t),t) , V (x, t) = v(n(x, t), t)

I The definitions of flow and density directly give

∂n

∂t
= Q = ρV,

∂n

∂x
= −ρ, h =

1

ρ
,

∂

∂x
= − 1

h

∂

∂n

I Transform the continuity equation (from the driver’s view):

0 =
dρ

dt
+ ρ

∂V

∂x

=

(
∂

∂t
+ V

∂

∂x

)[
1

h
(
n(x, t), t

)]− 1

h2
∂v

∂n

= − 1

h2

(
∂h

∂n

∂n

∂t
+
∂h

∂t
+ V

∂h

∂n

∂n

∂x

)
− 1

h2
∂v

∂n
∂n
∂t =ρV,

∂n
∂x=−ρ= − 1

h2

(
ρV

∂h

∂n
+
∂h

∂t
− ρV ∂h

∂n

)
− 1

h2
∂v

∂n

= − 1

h2

(
∂h

∂t
+
∂v

∂n

)
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Lagrange Continuity equation for homogeneous roads:
result

∂h

∂t
+
∂v

∂n
= 0

Lagrange form
of the continuity equation

I This result is plausible by integrating the second term over one unit of the index
variable (because n is dimensionless, the lhs. is multiplied by one):

∂h

∂t
+ v(n+ 1, t)− v(n, t) = 0 ⇒ ∂h

∂t
= vlead − v

h increases at a rate of the relative speed leader-follower.

? Why is the Lagrange form less efficient if there are bottlenecks?
Because bottlenecks are moving in this view
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Problems

? Using the continuity equation, show that the total number of vehicles on a closed ring road
with varying number of lanes L(x) (but no on- or off-ramps) never changes.

! Integrate continuity equation for the total quantities over the circumference L:∫ L
x=0

(
∂ρtot
∂t

)
= −

∫ L
x=0

(
∂Qtot
∂x

)
= Qtot(L)−Qtot(0) = 0

? How can we model the common behavior of drivers merging early onto the highway if there is
free traffic and merging late (near the end of the ramp) in congested conditions?

! Change the constant ramp term Qrmp/Lrmp = wQrmp with w = 1/Lrmp = const. to a variable w(x)

normalized to
∫ Lrmp
0 w(x) = 1

? Use the continuity equation to determine the traffic flow Q(x) in a stationary state assuming
a constant per-lane demand Q(x, 0) and (iii) homogeneous road, (ii) ramps, (iii) a variable
number of lanes.

! Stationarity means ∂ρ
∂t

= 0, so integrate over ∂Q
∂x

plus source terms

? Consider a three-to-two lane closing and a constant inflow Qin = Qtot(0, t) = 3 600 veh/h.
Find the average per-lane density ρ(x) and the average flow Q with respect to the two
continuous lanes assuming a density-independent vehicle speed of 108 km/h (i.e., capacity
Qmax > 1 800 veh/h/lane) and a merging zone of length L = 500 m. Compare with a
continuous two-lane road with an on-ramp. Homework
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