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4.1. Data Fusion: Problem Statement

Traffic flow data may come from several sources:

I stationary detectors
I floating cars
I point observations by drivers (“jam reporter”)

or authorities

They may also of different reliabil-
ity and even contradictory (spot
such an inconsistency above!).
→ back reliability weighting
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4.2. Data Fusion “by Hand”

An accident happened: When and where?
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Solution

A moving downstream jam front always has the wave speed w ⇒ straight line
connecting A and B
Extrapolate to the past the trajectory C of the first vehicle observed from the
bridge after the blocking

The intersection of both lines gives the location xcrash of the accident and the
time the road block is lifted (D)
Extrapolate to the past the trajectory E of the last vehicle that made it through
the future accident location

Since the accident is not moving, the intersection of trajectory E with the line
x = xcrash gives the time of the accident
The accident happened at the spatiotemporal point F
Assuming a constant upstream traffic demand the upstream jam front propagates
at a constant velocity ⇒ line FG
The location of the accident, the time of lifting the block, and the spatiotemporal
dynamics of the jam is revealed!
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4.3 Reliability weighting

Not all data sources are equally reliable. And may contradict each other. How to weight

them optimally, i.e., find optimal weights for Ŷ =
∑

m rmYm?

I Assume M independent and unbiased measurements Ym,m = 1, ...,M with error
variances σ2m. From the unbiasedness and the general variance rule
V (aY1 + bY2) = a2V (Y1) + b2V (Y2)

I ⇒ Optimization problem: find the reliability weightings ri such that the variance

σ2
Ŷ
(r) =

∑
m

r2mσ
2
m

!
= min r

∣∣∣∣ ∑
m

rm = 1

of the weighted average Ŷ =
∑

m rmym is minimized subject to the normalisation
condition.

? Why we need independence when using this formula? Is it practically fulfilled?
Otherwise, the variance formula will contain additional covariance terms. Independency generally fulfilled.

? Why we need the restraint
∑

m rm = 1?
Otherwise, the estimator is no longer unbiased: E(Ŷ ) =

∑
m rmE(Y ) 6= E(Y )
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Solving the restrained minimization problem

The method of Lagrange multipliers does the magic! With a single restraint (a generalisation is
straightforward, see Tutorial 04), do the following:

1. Formulate the restraint as an “=0” equation: g(r) =
∑

m rm − 1 = 0

2. Define the Lagrange function by adding to the function f to be minimized the restraint
multiplied by a Lagrange multiplier λ:

L(r) = f(r)− λg(r) =
∑
m′

r2m′σ2
m′ − λ

(∑
m′

r′m − 1

)

3. Minimize L unconditionally:
∂L

∂rm
= 2rmσ

2
m − λ

!
= 0

4. Calculate λ by inserting the result into the restraint: Here, we have rm = λ/(2σ2
m) ⇒

rm =
σ−2m∑
m′ σ

−2
m′
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4.4. Adaptive Smoothing Method (ASM)
1. isotropic smoothing

I Given: data points {(yi, xi, ti)} of
quantity Y at the spatiotemporal points
(xi, ti)

I Wanted: Estimate y(x, t) everywhere

I Isotropic solution:

y(x, t) =
∑

iwiyi with
wi ∝ φ0(x− xi, t− ti) and

φ0(x, t) = exp

[
−
(
|x|
σ

+
|t|
τ

)]
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Adaptive Smoothing Method
2. anisotropic smoothing

Use smoothing kernels with skewed time axis representing the wave velocities

I “Free” filter with cfree near v0:

wi ∝ φ0
(
x− xi, t− ti −

x− xi
cfree

)
I “Congested” filter with
ccong ≈ −15 km/h:

wi ∝ φ0
(
x− xi, t− ti −

x− xi
ccong

)
I Weighting of the filters

according to the “congested”
predictor
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ASM vs. conventional smoothing
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Validation of the Adaptive Smoothing Method: reference
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Validation I: detector distance 1 km
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Validation II: detector distance 2 km
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Validation III: detector distance 4 km
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ASM parameters: σ = 600m, τ = 40 s, cfree = 50 km/h,

w = ccong = −15 km/h, vc1 = 50 km/h, vc2 = 60 km/h

Robustness of the ASM: Sensitivity analysis Reference
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Wave speed w too slow

Robustness of the ASM: Sensitivity analysis I

wave speed w = −10 km/h instead of w = −15 km/h
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Wave speed w too high

Robustness of the ASM: Sensitivity analysis I

wave speed w = −20 km/h instead of w = −15 km/h
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Wrong transition speeds vc1 and vc2

Robustness of the ASM: Sensitivity analysis I

Transit speeds vc1 = 30 km/h instead of 50 km/h, vc2 = 50 km/h instead
of 60 km/h
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Applying the ASM to SDD, FCD, and both
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Application A9 Munich: the full congested regionApplication A9 Munich: the full congested region
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Application: understanding the dynamics of congestions

⇒ Models!
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