Lecture 4: Data Fusion

- 4.1. Data Fusion: Problem Statement
- ► 4.2. Data Fusion "by Hand"
- 4.3. Reliability Weighting
- 4.4. Adaptive Smoothing Method

Traffic flow data may come from several sources:

- stationary detectors
- floating cars
- point observations by drivers ("jam reporter") or authorities

They may also of different reliability and even contradictory (spot such an inconsistency above!). \rightarrow back reliability weighting

4.2. Data Fusion "by Hand"

An accident happened: When and where?

Solution

Sin indetention to fit of the state of the

4.3 Reliability weighting

Not all data sources are equally reliable. And may contradict each other. How to weight them optimally, i.e., find optimal weights for $\hat{Y} = \sum_{m} r_m Y_m$?

- ► Assume M independent and unbiased measurements Y_m, m = 1, ..., M with error variances σ²_m. From the unbiasedness and the general variance rule V(aY₁ + bY₂) = a²V(Y₁) + b²V(Y₂)
- ▶ \Rightarrow Optimization problem: find the reliability weightings r_i such that the variance

$$\sigma_{\hat{Y}}^2(\boldsymbol{r}) = \sum_m r_m^2 \sigma_m^2 \stackrel{!}{=} \min_{\boldsymbol{r}} \left| \sum_m r_m = 1 \right|$$

of the weighted average $\hat{Y} = \sum_m r_m y_m$ is minimized subject to the normalisation condition.

- ? Why we need independence when using this formula? Is it practically fulfilled? Otherwise, the variance formula will contain additional covariance terms. Independency generally fulfilled.
- ? Why we need the restraint $\sum_m r_m = 1$?

Otherwise, the estimator is no longer unbiased: $E(\hat{Y}) = \sum_{m} r_m E(Y) \neq E(Y)$

Solving the restrained minimization problem

The method of **Lagrange multipliers** does the magic! With a single restraint (a generalisation is straightforward, see Tutorial 04), do the following:

- 1. Formulate the restraint as an "=0" equation: $g(r) = \sum_m r_m 1 = 0$
- 2. Define the Lagrange function by adding to the function f to be minimized the restraint multiplied by a Lagrange multiplier λ :

$$L(\boldsymbol{r}) = f(\boldsymbol{r}) - \lambda g(\boldsymbol{r}) = \sum_{m'} r_{m'}^2 \sigma_{m'}^2 - \lambda \left(\sum_{m'} r_m' - 1\right)$$

3. Minimize *L* unconditionally:

$$\frac{\partial L}{\partial r_m} = 2r_m\sigma_m^2 - \lambda \stackrel{!}{=} 0$$

4. Calculate λ by inserting the result into the restraint: Here, we have $r_m = \lambda/(2\sigma_m^2) \Rightarrow$

$$r_m = \frac{\sigma_m^{-2}}{\sum_{m'}\sigma_{m'}^{-2}}$$

4.4. Adaptive Smoothing Method (ASM) 1. isotropic smoothing

- ► Given: data points {(y_i, x_i, t_i)} of quantity Y at the spatiotemporal points (x_i, t_i)
- **•** Wanted: Estimate y(x, t) everywhere

Isotropic solution:

$$y(x,t) = \sum_i w_i y_i$$
 with $w_i \propto \phi_0(x-x_i,t-t_i)$ and

$$\phi_0(x,t) = \exp\left[-\left(\frac{|x|}{\sigma} + \frac{|t|}{\tau}\right)\right]$$

Adaptive Smoothing Method 2. anisotropic smoothing

Use smoothing kernels with skewed time axis representing the wave velocities

• "Free" filter with c_{free} near v_0 :

$$w_i \propto \phi_0 \left(x - x_i, t - t_i - \frac{x - x_i}{c_{\mathsf{free}}} \right)$$

• "Congested" filter with $c_{\text{cong}} \approx -15 \,\text{km/h}$:

$$w_i \propto \phi_0 \left(x - x_i, t - t_i - \frac{x - x_i}{c_{\rm cong}} \right)$$

 Weighting of the filters according to the "congested" predictor

ASM vs. conventional smoothing

Validation of the Adaptive Smoothing Method: reference

Validation I: detector distance 1 km

Validation II: detector distance 2 km

Validation III: detector distance 4 km

Robustness of the ASM: Sensitivity analysis Reference

ASM parameters: $\sigma = 600 \text{ m}$, $\tau = 40 \text{ s}$, $c_{\text{free}} = 50 \text{ km/h}$, $w = c_{\text{cong}} = -15 \text{ km/h}$, vc1 = 50 km/h, vc2 = 60 km/h

Robustness of the ASM: Sensitivity analysis I

wave speed $w = -10 \,\mathrm{km/h}$ instead of $w = -15 \,\mathrm{km/h}$

4: Data Fusion

Robustness of the ASM: Sensitivity analysis I

wave speed $w = -20 \,\mathrm{km/h}$ instead of $w = -15 \,\mathrm{km/h}$

Robustness of the ASM: Sensitivity analysis I

Transit speeds $v_{c1} = 30 \text{ km/h}$ instead of 50 km/h, $v_{c2} = 50 \text{ km/h}$ instead of 60 km/h

Applying the ASM to SDD, FCD, and both

V [km/h]

Application: understanding the dynamics of congestions

 \Rightarrow Models!