Lecture 03: Cross-Sectional Data Analysis

- 3.1. Estimating Spatial Quantities
- 3.2. Analysis I: Local Flow Characteristics
- 3.3. Analysis II: Time Series
- 3.4. Analysis III: Spatio-Temporal State

3.1. Estimating Spatial Quantities from SDD

Following example shows how biased the arithmetic mean speed and "density=flow/speed" can be when naively estimating spatial quantities:

determine $Q^{\text {tot }}$
compare with the "true" density and spatial mean speed

3.1. Estimating Spatial Quantities from SDD

Following example shows how biased the arithmetic mean speed and "density=flow/speed" can be when naively estimating spatial quantities:

? determine $Q^{\text {tot }}, V$ and $\rho^{\text {tot }}=Q^{\text {tot }} / V$ for the total cross-section of two lanes and compare with the "true" density and spatial mean speed

[^0]
3.1. Estimating Spatial Quantities from SDD

Following example shows how biased the arithmetic mean speed and "density=flow/speed" can be when naively estimating spatial quantities:

? determine $Q^{\text {tot }}, V$ and $\rho^{\text {tot }}=Q^{\text {tot }} / V$ for the total cross-section of two lanes and compare with the "true" density and spatial mean speed

Solution: left: $V_{l}=40 \mathrm{~m} / \mathrm{s}, Q_{l}=1 / 3 \mathrm{veh} / \mathrm{s} ;$ right: $V_{r}=20 \mathrm{~m} / \mathrm{s}, Q_{r}=1 / 3 \mathrm{veh} / \mathrm{s}$;
total: $Q^{\text {tot }}=Q_{l}+Q_{r}=2 / 3 \mathrm{veh} / \mathrm{s}, V=1 / 2\left(V_{l}+V_{r}\right)=30 \mathrm{~m} / \mathrm{s}, \rho^{\mathrm{tot}}=Q^{\mathrm{tot}} / V=1 \mathrm{veh} /(45 \mathrm{~m})$,
true value: 3 veh $/ 120 \mathrm{~m}=1 \mathrm{veh} /(40 \mathrm{~m})$

Another example of a bias

Determine flow and speed over an aggregation interval $\Delta t_{\mathrm{aggr}}=20 \mathrm{~s}$

Another example of a bias

Determine flow and speed over an aggregation interval
$\Delta t_{\mathrm{aggr}}=20 \mathrm{~s}$
$Q=0.25 \mathrm{veh} / \mathrm{s}$,
$V=10 \mathrm{~m} / \mathrm{s}$

Another example of a bias

Determine flow and speed over an aggregation interval $\Delta t_{\text {aggr }}=20 \mathrm{~s}$
$Q=0.25 \mathrm{veh} / \mathrm{s}$,
$V=10 \mathrm{~m} / \mathrm{s}$

Compare flow divided by speed with the true spatial density aggregated over 100 m

Another example of a bias

Determine flow and speed over an aggregation interval $\Delta t_{\mathrm{aggr}}=20 \mathrm{~s}$
$Q=0.25 \mathrm{veh} / \mathrm{s}$,
$V=10 \mathrm{~m} / \mathrm{s}$

Compare flow divided by speed with the true spatial density aggregated over 100 m $Q / V=25 \mathrm{veh} / \mathrm{km}$, $\rho^{\text {true }}=70 \mathrm{veh} / \mathrm{km}$

Definition of macroscopic traffic flow quantities

- Local average or time mean of quantity y (stationary detectors)

$$
Y=E\left(y_{i} \mid x \text { fixed }\right):=E\left(y_{i}\right)=1 / N_{\Delta t} \sum_{i} y_{i}\left(x, t_{i}\right)
$$

Definition of macroscopic traffic flow quantities

- Local average or time mean of quantity y (stationary detectors)

$$
Y=E\left(y_{i} \mid x \text { fixed }\right):=E\left(y_{i}\right)=1 / N_{\Delta t} \sum_{i} y_{i}\left(x, t_{i}\right)
$$

- Instantaneous average or space mean of quantity y (snapshot)

$$
Y_{s}=E\left(y_{i} \mid t \text { fixed }\right):=E_{s}\left(y_{i}\right)=1 / N_{\Delta x} \sum_{i} y_{i}\left(x_{i}, t\right)
$$

Definition of macroscopic traffic flow quantities II: Edie's definitions

Spatiotemporal mean (Edie's definition) of density, flow, speed:

$$
\rho_{\text {Edie }}=t^{\text {tot }} / A, \quad Q_{\text {Edie }}=x^{\text {tot }} / A, \quad V_{\text {Edie }}=Q_{\text {Edie }} / \rho_{\text {Edie }}
$$

Problems

? Show that Edie's definition of the speed is just the total distance travelled in A divided by the total time spent in A or, equivalently, the time mean speed over all the trajectories

[^1] $V_{\text {Ed }}$

Problems

? Show that Edie's definition of the speed is just the total distance travelled in A divided by the total time spent in A or, equivalently, the time mean speed over all the trajectories
? Consider the spatiotemporal region $A=[-80 \mathrm{~m}, 0 \mathrm{~m}] \times[0 \mathrm{~s}, 40 \mathrm{~s}]$ and estimate $\rho_{\text {Edie }}, Q_{\text {Edie }}$, and $V_{\text {Edie }}$

Problems

? Show that Edie's definition of the speed is just the total distance travelled in A divided by the total time spent in A or, equivalently, the time mean speed over all the trajectories
? Consider the spatiotemporal region $A=[-80 \mathrm{~m}, 0 \mathrm{~m}] \times[0 \mathrm{~s}, 40 \mathrm{~s}]$ and estimate $\rho_{\text {Edie }}, Q_{\text {Edie }}$, and $V_{\text {Edie }} t^{\text {tot }}=(2+11) / 240 \mathrm{~s}=260 \mathrm{~s}, x^{\text {tot }} \approx 10 * 40 \mathrm{~m}=400 \mathrm{~m}$,
$\rho_{\text {Edie }}=260 \mathrm{~s} / 3,200 \mathrm{sm}=80 \mathrm{veh} / \mathrm{km}, Q_{\text {Edie }}=0.125 \mathrm{veh} / \mathrm{s}$,
$V_{\mathrm{Edie}} \approx 1.5 \mathrm{~m} / \mathrm{s}$

Problems

? Show that Edie's definition of the speed is just the total distance travelled in A divided by the total time spent in A or, equivalently, the time mean speed over all the trajectories
? Consider the spatiotemporal region $A=[-80 \mathrm{~m}, 0 \mathrm{~m}] \times[0 \mathrm{~s}, 40 \mathrm{~s}]$ and estimate $\rho_{\text {Edie }}, Q_{\text {Edie }}$, and $V_{\text {Edie }} t^{\text {tot }}=(2+11) / 240 \mathrm{~s}=260 \mathrm{~s}, x^{\text {tot }} \approx 10 * 40 \mathrm{~m}=400 \mathrm{~m}$,
$\rho_{\text {Edie }}=260 \mathrm{~s} / 3,200 \mathrm{sm}=80 \mathrm{veh} / \mathrm{km}, Q_{\text {Edie }}=0.125 \mathrm{veh} / \mathrm{s}$,
$V_{\text {Edie }} \approx 1.5 \mathrm{~m} / \mathrm{s}$
? Estimate Q, the time mean V and $\hat{\rho}=Q / V$ in A at $x=-40 \mathrm{~m}$

Problems

? Show that Edie's definition of the speed is just the total distance travelled in A divided by the total time spent in A or, equivalently, the time mean speed over all the trajectories
? Consider the spatiotemporal region $A=[-80 \mathrm{~m}, 0 \mathrm{~m}] \times[0 \mathrm{~s}, 40 \mathrm{~s}]$ and estimate $\rho_{\text {Edie }}, Q_{\text {Edie }}$, and $V_{\text {Edie }} t^{\text {tot }}=(2+11) / 240 \mathrm{~s}=260 \mathrm{~s}, x^{\text {tot }} \approx 10 * 40 \mathrm{~m}=400 \mathrm{~m}$,
$\rho_{\text {Edie }}=260 \mathrm{~s} / 3,200 \mathrm{sm}=80 \mathrm{veh} / \mathrm{km}, Q_{\text {Edie }}=0.125 \mathrm{veh} / \mathrm{s}$,
$V_{\mathrm{Edie}} \approx 1.5 \mathrm{~m} / \mathrm{s}$
? Estimate Q, the time mean V and $\hat{\rho}=Q / V$ in A at $x=-40 \mathrm{~m}$ $Q=7 / 40 \mathrm{~s}, V \approx V_{0}=10 \mathrm{~m} / \mathrm{s}$, $\rho=17.5 \mathrm{veh} / \mathrm{km}$
Estimate ρ and the space mean V_{S} in A at $t=20 \mathrm{~s}$

Problems

? Show that Edie's definition of the speed is just the total distance travelled in A divided by the total time spent in A or, equivalently, the time mean speed over all the trajectories
? Consider the spatiotemporal region $A=[-80 \mathrm{~m}, 0 \mathrm{~m}] \times[0 \mathrm{~s}, 40 \mathrm{~s}]$ and estimate $\rho_{\text {Edie }}, Q_{\text {Edie }}$, and $V_{\text {Edie }} t^{\text {tot }}=(2+11) / 240 \mathrm{~s}=260 \mathrm{~s}, x^{\text {tot }} \approx 10 * 40 \mathrm{~m}=400 \mathrm{~m}$,
$\rho_{\text {Edie }}=260 \mathrm{~s} / 3,200 \mathrm{sm}=80 \mathrm{veh} / \mathrm{km}, Q_{\text {Edie }}=0.125 \mathrm{veh} / \mathrm{s}$,
$V_{\mathrm{Edie}} \approx 1.5 \mathrm{~m} / \mathrm{s}$
? Estimate Q, the time mean V and $\hat{\rho}=Q / V$ in A at $x=-40 \mathrm{~m}$ $Q=7 / 40 \mathrm{~s}, V \approx V_{0}=10 \mathrm{~m} / \mathrm{s}$,
$\rho=17.5 \mathrm{veh} / \mathrm{km}$
? Estimate ρ and the space mean V_{s} in A at $t=20 \mathrm{~s}$

Problems

? Show that Edie's definition of the speed is just the total distance travelled in A divided by the total time spent in A or, equivalently, the time mean speed over all the trajectories
? Consider the spatiotemporal region $A=[-80 \mathrm{~m}, 0 \mathrm{~m}] \times[0 \mathrm{~s}, 40 \mathrm{~s}]$ and estimate $\rho_{\text {Edie }}, Q_{\text {Edie }}$, and $V_{\text {Edie }} t^{\text {tot }}=(2+11) / 240 \mathrm{~s}=260 \mathrm{~s}, x^{\text {tot }} \approx 10 * 40 \mathrm{~m}=400 \mathrm{~m}$,
$\rho_{\text {Edie }}=260 \mathrm{~s} / 3,200 \mathrm{sm}=80 \mathrm{veh} / \mathrm{km}, Q_{\text {Edie }}=0.125 \mathrm{veh} / \mathrm{s}$,
$V_{\mathrm{Edie}} \approx 1.5 \mathrm{~m} / \mathrm{s}$
? Estimate Q, the time mean V and $\hat{\rho}=Q / V$ in A at $x=-40 \mathrm{~m}$ $Q=7 / 40 \mathrm{~s}, V \approx V_{0}=10 \mathrm{~m} / \mathrm{s}$,
$\rho=17.5 \mathrm{veh} / \mathrm{km}$
? Estimate ρ and the space mean V_{s} in A at $t=20 \mathrm{~s}$
$\rho=7 / 80 \mathrm{~m} \approx 87 \mathrm{veh} / \mathrm{km}$,
$V_{s}=2 / 710 \mathrm{~m} / \mathrm{s} \approx 2-9 \mathrm{~m} / \mathrm{s} \overline{\bar{I}}$

Leutzbach relation between space and time mean speed

Assume a steady state at a spatial or instantaneous speed density function $f(v)$. Then,
\rightarrow the partial density of a speed layer is given by $\mathrm{d} \rho=\rho f(v) \mathrm{d} v$
\rightarrow Since the number of stationary detector recordings (time mean!) is proportional to the flow the temnoral or Incal sneed densitv function $w(v)$ relevant for detector measurements is proportional to the partial flow $\mathrm{d} Q=v \mathrm{~d} \rho$

Leutzbach relation between space and time mean speed

Assume a steady state at a spatial or instantaneous speed density function $f(v)$. Then,

- the partial density of a speed layer is given by $\mathrm{d} \rho=\rho f(v) \mathrm{d} v . f(v)$ and $w(v)$ blackboard
\rightarrow Since the number of stationary detector recordings (time mean!) is proportional to the flow, the temporal or local speed density function $w(v)$ relevant for detector measurements is proportional to the partial flow $\mathrm{d} Q=v \mathrm{~d} \rho$:
\rightarrow For the time-mean speed V as a function of the space-mean speed V_{s}, we obtain

Leutzbach relation between space and time mean speed

Assume a steady state at a spatial or instantaneous speed density function $f(v)$. Then,

- the partial density of a speed layer is given by $\mathrm{d} \rho=\rho f(v) \mathrm{d} v \cdot f(v)$ and $w(v)$ blackboard
- Since the number of stationary detector recordings (time mean!) is proportional to the flow, the temporal or local speed density function $\boldsymbol{w}(\boldsymbol{v})$ relevant for detector measurements is proportional to the partial flow $\mathrm{d} Q=v \mathrm{~d} \rho$:

$$
w(v) \mathrm{d} v=\frac{\mathrm{d} Q}{Q}=\frac{\rho v f(v) \mathrm{d} v}{\int \rho v f(v) \mathrm{d} v}=\frac{v f(v) \mathrm{d} v}{\int v f(v) \mathrm{d} v}=\frac{v f(v) \mathrm{d} v}{V_{s}} \Rightarrow w(v)=\frac{v f(v)}{V_{s}}
$$

\rightarrow For the time-mean speed V as a function of the space-mean speed V_{s}, we obtain

Leutzbach relation between space and time mean speed

Assume a steady state at a spatial or instantaneous speed density function $f(v)$. Then,

- the partial density of a speed layer is given by $\mathrm{d} \rho=\rho f(v) \mathrm{d} v . f(v)$ and $w(v)$ blackboard
- Since the number of stationary detector recordings (time mean!) is proportional to the flow, the temporal or local speed density function $\boldsymbol{w}(\boldsymbol{v})$ relevant for detector measurements is proportional to the partial flow $\mathrm{d} Q=v \mathrm{~d} \rho$:

$$
w(v) \mathrm{d} v=\frac{\mathrm{d} Q}{Q}=\frac{\rho v f(v) \mathrm{d} v}{\int \rho v f(v) \mathrm{d} v}=\frac{v f(v) \mathrm{d} v}{\int v f(v) \mathrm{d} v}=\frac{v f(v) \mathrm{d} v}{V_{s}} \Rightarrow w(v)=\frac{v f(v)}{V_{s}}
$$

- For the time-mean speed V as a function of the space-mean speed V_{s}, we obtain

$$
V=\int v w(v) \mathrm{d} v=\frac{1}{V_{s}} \int v^{2} f(v) \mathrm{d} v=\frac{E_{s}\left(v_{i}^{2}\right)}{V_{s}}
$$

- With the general relation $E\left(X^{2}\right)=\operatorname{Var}(X)+(E(X))^{2}$ also valid for spatial averages $E_{s}($. we have $E_{s}\left(v_{i}^{2}\right)=\operatorname{Var}_{s}\left(v_{i}\right)+V_{s}^{2}$, so

Leutzbach relation between space and time mean speed

Assume a steady state at a spatial or instantaneous speed density function $f(v)$. Then,

- the partial density of a speed layer is given by $\mathrm{d} \rho=\rho f(v) \mathrm{d} v . f(v)$ and $w(v)$ blackboard
- Since the number of stationary detector recordings (time mean!) is proportional to the flow, the temporal or local speed density function $\boldsymbol{w}(\boldsymbol{v})$ relevant for detector measurements is proportional to the partial flow $\mathrm{d} Q=v \mathrm{~d} \rho$:

$$
w(v) \mathrm{d} v=\frac{\mathrm{d} Q}{Q}=\frac{\rho v f(v) \mathrm{d} v}{\int \rho v f(v) \mathrm{d} v}=\frac{v f(v) \mathrm{d} v}{\int v f(v) \mathrm{d} v}=\frac{v f(v) \mathrm{d} v}{V_{s}} \Rightarrow w(v)=\frac{v f(v)}{V_{s}}
$$

- For the time-mean speed V as a function of the space-mean speed V_{s}, we obtain

$$
V=\int v w(v) \mathrm{d} v=\frac{1}{V_{s}} \int v^{2} f(v) \mathrm{d} v=\frac{E_{s}\left(v_{i}^{2}\right)}{V_{s}}
$$

- With the general relation $E\left(X^{2}\right)=\operatorname{Var}(X)+(E(X))^{2}$ also valid for spatial averages $E_{s}($.$) ,$ we have $E_{s}\left(v_{i}^{2}\right)=\operatorname{Var}_{s}\left(v_{i}\right)+V_{s}^{2}$, so

$$
V=\frac{\operatorname{Var}_{s}\left(v_{i}\right)+V_{s}^{2}}{V_{s}}=V_{s}+\frac{\operatorname{Var}_{s}\left(v_{i}\right)}{V_{s}} \quad \text { Leutzbach relation }
$$

Estimating space mean speed by harmonic averages

- Both time and space means can be applied to any function y_{i} of recorded single-vehicle data such as $y_{i}=v_{i}$ or $y_{i}=1 / v_{i}$:
- temporal arithmetic average: $V=E\left(v_{i}\right)$
- temporal harmonic average: $V_{H}=1 / E\left(1 / v_{i}\right)$
- spatial arithmetic average: $V_{s}=E_{s}\left(v_{i}\right)$
\rightarrow Derivation of the Leutzbach relation \rightarrow any expected time average $E\left(y_{i}\right)$ of data y_{i} can be written in terms of the spatial (!) speed distribution function $f(v)$ via the weighting $w(v) \mathrm{d} v=v f(v) / V_{\mathrm{S}} \mathrm{d} v$ as

Estimating space mean speed by harmonic averages

- Both time and space means can be applied to any function y_{i} of recorded single-vehicle data such as $y_{i}=v_{i}$ or $y_{i}=1 / v_{i}$:
- temporal arithmetic average: $V=E\left(v_{i}\right)$
- temporal harmonic average: $V_{H}=1 / E\left(1 / v_{i}\right)$
- spatial arithmetic average: $V_{s}=E_{s}\left(v_{i}\right)$
- Derivation of the Leutzbach relation \rightarrow any expected time average $E\left(y_{i}\right)$ of data y_{i} can be written in terms of the spatial (!) speed distribution function $f(v)$ via the weighting $w(v) \mathrm{d} v=v f(v) / V_{\mathrm{S}} \mathrm{d} v$ as

$$
E\left(y_{i}\right)=\int y w(v) \mathrm{d} v=\frac{1}{V_{s}} \int y v f(v) \mathrm{d} v
$$

- With $y_{i}=1 / v_{i}$, we obtain

The harmonic time mean speed is an unbiased estimator of the space mean speed provided

Estimating space mean speed by harmonic averages

- Both time and space means can be applied to any function y_{i} of recorded single-vehicle data such as $y_{i}=v_{i}$ or $y_{i}=1 / v_{i}$:
- temporal arithmetic average: $V=E\left(v_{i}\right)$
- temporal harmonic average: $V_{H}=1 / E\left(1 / v_{i}\right)$
- spatial arithmetic average: $V_{s}=E_{s}\left(v_{i}\right)$
- Derivation of the Leutzbach relation \rightarrow any expected time average $E\left(y_{i}\right)$ of data y_{i} can be written in terms of the spatial (!) speed distribution function $f(v)$ via the weighting $w(v) \mathrm{d} v=v f(v) / V_{\mathrm{S}} \mathrm{d} v$ as

$$
E\left(y_{i}\right)=\int y w(v) \mathrm{d} v=\frac{1}{V_{s}} \int y v f(v) \mathrm{d} v
$$

- With $y_{i}=1 / v_{i}$, we obtain

$$
\begin{aligned}
\frac{1}{V_{H}}=E\left(1 / v_{i}\right) & =\frac{1}{V_{s}} \int f(v) \mathrm{d} v=\frac{1}{V_{s}} \\
V_{s} & =V_{\mathrm{H}}
\end{aligned}
$$

The harmonic time mean speed is an unbiased estimator of the space mean speed provided stationarity (in the statistical sense, i.e., $f(v)$ is unchanged over averaging space and time).

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

$$
\frac{1}{\hat{\rho}}=E\left(d_{i}\right)
$$

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

$$
\frac{1}{\hat{\rho}}=E\left(d_{i}\right)=E\left(v_{i-1} \Delta t_{i}\right)
$$

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

$$
\begin{aligned}
\frac{1}{\hat{\rho}} & =E\left(d_{i}\right)=E\left(v_{i-1} \Delta t_{i}\right) \\
& \approx E\left(v_{i} \Delta t_{i}\right)
\end{aligned}
$$

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

$$
\begin{aligned}
\frac{1}{\hat{\rho}} & =E\left(d_{i}\right)=E\left(v_{i-1} \Delta t_{i}\right) \\
& \approx E\left(v_{i} \Delta t_{i}\right) \\
& =E\left(v_{i}\right) E\left(\Delta t_{i}\right)+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)
\end{aligned}
$$

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

$$
\begin{aligned}
\frac{1}{\hat{\rho}} & =E\left(d_{i}\right)=E\left(v_{i-1} \Delta t_{i}\right) \\
& \approx E\left(v_{i} \Delta t_{i}\right) \\
& =E\left(v_{i}\right) E\left(\Delta t_{i}\right)+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right) \\
& =\frac{V}{Q}+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)
\end{aligned}
$$

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

$$
\begin{aligned}
\frac{1}{\hat{\rho}} & =E\left(d_{i}\right)=E\left(v_{i-1} \Delta t_{i}\right) \\
& \approx E\left(v_{i} \Delta t_{i}\right) \\
& =E\left(v_{i}\right) E\left(\Delta t_{i}\right)+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right) \\
& =\frac{V}{Q}+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)
\end{aligned}
$$

\Rightarrow unbiased estimator $\hat{\rho}$ as a function of the "usual" estimator $\rho=Q / V$:

$$
\hat{\rho}=\rho\left(\frac{1}{1+\rho \operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)}\right)
$$

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

$$
\begin{aligned}
\frac{1}{\hat{\rho}} & =E\left(d_{i}\right)=E\left(v_{i-1} \Delta t_{i}\right) \\
& \approx E\left(v_{i} \Delta t_{i}\right) \\
& =E\left(v_{i}\right) E\left(\Delta t_{i}\right)+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right) \\
& =\frac{V}{Q}+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)
\end{aligned}
$$

\Rightarrow unbiased estimator $\hat{\rho}$ as a function of the "usual" estimator $\rho=Q / V$:

$$
\hat{\rho}=\rho\left(\frac{1}{1+\rho \operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)}\right)
$$

? Show that the expected true density $\hat{\rho}$ is generally underestimated by $\rho=Q / V$. In which situations this bias becomes pronounced?

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

$$
\begin{aligned}
\frac{1}{\hat{\rho}} & =E\left(d_{i}\right)=E\left(v_{i-1} \Delta t_{i}\right) \\
& \approx E\left(v_{i} \Delta t_{i}\right) \\
& =E\left(v_{i}\right) E\left(\Delta t_{i}\right)+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right) \\
& =\frac{V}{Q}+\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)
\end{aligned}
$$

\Rightarrow unbiased estimator $\hat{\rho}$ as a function of the "usual" estimator $\rho=Q / V$:

$$
\hat{\rho}=\rho\left(\frac{1}{1+\rho \operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)}\right)
$$

? Show that the expected true density $\hat{\rho}$ is generally underestimated by $\rho=Q / V$. In which situations this bias becomes pronounced? Hint: what is the expected sign of this covariance?

Comparison with a model reveals systematic bias

Comparison with a model reveals systematic bias

3.2. Analysis I: Local Flow Characteristics

3.2. Analysis I: Local Flow Characteristics

3.2. Analysis I: Local Flow Characteristics

3.2. Analysis I: Local Flow Characteristics

3.2. Analysis I: Local Flow Characteristics

Rottepolderplein S 17

Flow-density-speed data and fundamental diagram

Free and congested Regimes:

Flow-density-speed data and fundamental diagram

Free and congested Regimes:
Why is the red congested line of the FD not a regression line of the congested data points?

Why is the fundamental diagram so "fundamental"

Why is the fundamental diagram so "fundamental"

- free traffic: $Q(\rho)=V_{0} \rho$

Why is the fundamental diagram so "fundamental"

- free traffic:

$$
Q(\rho)=V_{0} \rho
$$

- Intersection with the abszissa: $\Rightarrow l_{\text {eff }}=1 / \rho_{\text {max }}$

Why is the fundamental diagram so "fundamental"

- free traffic: $Q(\rho)=V_{0} \rho$
- Intersection with the abszissa: $\Rightarrow l_{\text {eff }}=1 / \rho_{\text {max }}$
- Slope $w=Q_{c}^{\prime}(\rho)=-l_{\text {eff }} / T \Rightarrow$ wave speed w, time gap T

Why is the fundamental diagram so "fundamental"

- free traffic: $Q(\rho)=V_{0} \rho$
- Intersection with the abszissa:
$\Rightarrow l_{\text {eff }}=1 / \rho_{\text {max }}$
- Slope $w=Q_{\mathrm{c}}^{\prime}(\rho)=-l_{\text {eff }} / T \Rightarrow$ wave speed w, time gap T
- Intersection with Q_{f} :
\Rightarrow estimate for capacity $Q_{\text {max }}=V_{0} /\left(V_{0} T+l_{\text {eff }}\right)$

Derivation of the wave speed

- The sequential starting of vehicles once a traffic light turns green has nothing to do with reaction time but that a moving vehicle needs more space headway $\left(l_{\text {eff }}+v T\right)$ than a standing one ($l_{\text {eff }}$)
- Extrem case: Zero reaction time, infinite aceleration to the desired speed v_{0} one the space headway $\Delta x=l_{\text {eff }}+v_{o} T$
- Reasoning also valid for the general congested case (\Rightarrow Newell's model)

- Wave speed equal to gradient of the congested part of the FD \Rightarrow later

Bias check I: flow Q, speed V, density $\rho=Q / V$
V [km/h]

Bias II: flow Q, speed V_{H}, density Q / V_{H}

Bias III: flow Q, speed $\underset{\mathrm{V}[\mathrm{km} / \mathrm{h}]}{ } V_{H}$, density $\rho=Q_{H} / V_{H}=E\left(1 / \Delta t_{i}\right) / V_{H}$

Real spatial local density, spatio-temporal local speed
V [km/h]

Regional and infrastructural differences

- German A8-East near Munich: Higher maximum speed and lower capacity compared to the Dutch A9 near Amsterdam

Speed synchronisation across lanes

- Low densities \rightarrow little interactions \rightarrow nearly everybody can drive at his/her desired speed chosing the suitable lane ("fast", "middle", or "slow") $\rightarrow \Delta v$ large;
\rightarrow densities near capacity: still no congestion but much interaction \rightarrow small Δv values;
\qquad

Speed synchronisation across lanes

- Low densities \rightarrow little interactions \rightarrow nearly everybody can drive at his/her desired speed chosing the suitable lane ("fast", "middle", or "slow") $\rightarrow \Delta v$ large;
- densities near capacity: still no congestion but much interaction \rightarrow small Δv values;
$>$ jammed region: $\Delta v \approx 0$ ("in a jam, everybody is equal")

Speed synchronisation across lanes

- Low densities \rightarrow little interactions \rightarrow nearly everybody can drive at his/her desired speed chosing the suitable lane ("fast", "middle", or "slow") $\rightarrow \Delta v$ large;
- densities near capacity: still no congestion but much interaction \rightarrow small Δv values;
- jammed region: $\Delta v \approx 0$ ("in a jam, everybody is equal")

Horror Vacui

? Is there a "fear of the empty Autobahn" (Horror Vacui)?

Horror Vacui explained: Simpson's Effect/Paradox

! Different weather and/or traffic composition and/or speed limits in the three time intervals \rightarrow Simpson's Effect

Problem: Simpson's effect in local flow characteristics

? Explain Simpson's effect for exam ratings: Languages: females 80%, avg grade 2.5, males 20%, avg grade 2.0 ; STEM: females 20%, avg grade 3.5 , males 20%, avg grade 3.0.

In each department, males have a better average. Still, mixing the departments together, the women are better (average 2.7) than the men (2.8)
\qquad
\qquad

Problem: Simpson's effect in local flow characteristics

? Explain Simpson's effect for exam ratings: Languages: females 80%, avg grade 2.5, males 20%, avg grade 2.0 ; STEM: females 20%, avg grade 3.5 , males 20%, avg grade 3.0.
! In each department, males have a better average. Still, mixing the departments together, the women are better (average 2.7) than the men (2.8).

In traffic flow data, Simpson's effect is relevant if the time variable is eliminated such as in speed-density scatter plots. Why?
\qquad
\qquad
\qquad
\qquad

Problem: Simpson's effect in local flow characteristics

? Explain Simpson's effect for exam ratings: Languages: females 80%, avg grade 2.5, males 20%, avg grade 2.0 ; STEM: females 20%, avg grade 3.5 , males 20%, avg grade 3.0.
! In each department, males have a better average. Still, mixing the departments together, the women are better (average 2.7) than the men (2.8).
? In traffic flow data, Simpson's effect is relevant if the time variable is eliminated such as in speed-density scatter plots. Why?
because (i) the vehicle and driver composition, visibility/road conditions and possibly traffic regulations change during the daytime, (ii) these changes are correlated with flow, density, and speed \Rightarrow sampling of heterogeneous data with heterogeneities correlated to the variables of interest \Rightarrow Simpson's effect
\qquad
\qquad
\qquad
\qquad

Problem: Simpson's effect in local flow characteristics

? Explain Simpson's effect for exam ratings: Languages: females 80%, avg grade 2.5, males 20%, avg grade 2.0 ; STEM: females 20%, avg grade 3.5 , males 20%, avg grade 3.0.
! In each department, males have a better average. Still, mixing the departments together, the women are better (average 2.7) than the men (2.8).
? In traffic flow data, Simpson's effect is relevant if the time variable is eliminated such as in speed-density scatter plots. Why?
! because (i) the vehicle and driver composition, visibility/road conditions and possibly traffic regulations change during the daytime, (ii) these changes are correlated with flow, density, and speed \Rightarrow sampling of heterogeneous data with heterogeneities correlated to the variables of interest \Rightarrow Simpson's effect.

Assume (i) at night a density of 1 veh/h/lane and traffic consisting to 50% of trucks (temporal average!), (ii) before the rush hour (still little interactions) a density of 10 veh/h/lane and 10% of trucks. Plot the corresponding two speed-density points demonstrating the apparent horror vacui. Assume as (average) desired speed $120 \mathrm{~km} / \mathrm{h}$ for cars and $80 \mathrm{~km} / \mathrm{h}$ for trucks and a reduction of $10 \mathrm{~km} / \mathrm{h}$ for cars in case (ii)

Problem: Simpson's effect in local flow characteristics

? Explain Simpson's effect for exam ratings: Languages: females 80%, avg grade 2.5, males 20%, avg grade 2.0 ; STEM: females 20%, avg grade 3.5 , males 20%, avg grade 3.0.
! In each department, males have a better average. Still, mixing the departments together, the women are better (average 2.7) than the men (2.8).
? In traffic flow data, Simpson's effect is relevant if the time variable is eliminated such as in speed-density scatter plots. Why?
! because (i) the vehicle and driver composition, visibility/road conditions and possibly traffic regulations change during the daytime, (ii) these changes are correlated with flow, density, and speed \Rightarrow sampling of heterogeneous data with heterogeneities correlated to the variables of interest \Rightarrow Simpson's effect.
? Assume (i) at night a density of $1 \mathrm{veh} / \mathrm{h} /$ lane and traffic consisting to 50% of trucks (temporal average!), (ii) before the rush hour (still little interactions) a density of $10 \mathrm{veh} / \mathrm{h} /$ lane and 10% of trucks. Plot the corresponding two speed-density points demonstrating the apparent horror vacui. Assume as (average) desired speed $120 \mathrm{~km} / \mathrm{h}$ for cars and $80 \mathrm{~km} / \mathrm{h}$ for trucks and a reduction of $10 \mathrm{~km} / \mathrm{h}$ for cars in case (ii).

Problem: Simpson's effect in local flow characteristics

? Explain Simpson's effect for exam ratings: Languages: females 80%, avg grade 2.5, males 20%, avg grade 2.0 ; STEM: females 20%, avg grade 3.5 , males 20%, avg grade 3.0 .
! In each department, males have a better average. Still, mixing the departments together, the women are better (average 2.7) than the men (2.8).
? In traffic flow data, Simpson's effect is relevant if the time variable is eliminated such as in speed-density scatter plots. Why?
! because (i) the vehicle and driver composition, visibility/road conditions and possibly traffic regulations change during the daytime, (ii) these changes are correlated with flow, density, and speed \Rightarrow sampling of heterogeneous data with heterogeneities correlated to the variables of interest \Rightarrow Simpson's effect.
? Assume (i) at night a density of $1 \mathrm{veh} / \mathrm{h} /$ lane and traffic consisting to 50% of trucks (temporal average!), (ii) before the rush hour (still little interactions) a density of $10 \mathrm{veh} / \mathrm{h} /$ lane and 10% of trucks. Plot the corresponding two speed-density points demonstrating the apparent horror vacui. Assume as (average) desired speed $120 \mathrm{~km} / \mathrm{h}$ for cars and $80 \mathrm{~km} / \mathrm{h}$ for trucks and a reduction of $10 \mathrm{~km} / \mathrm{h}$ for cars in case (ii).
! (i) At night: $V=0.5(80+120) \mathrm{km} / \mathrm{h}=100 \mathrm{~km} / \mathrm{h}$ At night, the average speed is lower than before the rush hour although neither vehicle type drives more slowly and the cars even faster: Simpson;s paradox!

Problem: Simpson's effect in local flow characteristics

? Explain Simpson's effect for exam ratings: Languages: females 80%, avg grade 2.5, males 20%, avg grade 2.0 ; STEM: females 20%, avg grade 3.5 , males 20%, avg grade 3.0.
! In each department, males have a better average. Still, mixing the departments together, the women are better (average 2.7) than the men (2.8).
? In traffic flow data, Simpson's effect is relevant if the time variable is eliminated such as in speed-density scatter plots. Why?
! because (i) the vehicle and driver composition, visibility/road conditions and possibly traffic regulations change during the daytime, (ii) these changes are correlated with flow, density, and speed \Rightarrow sampling of heterogeneous data with heterogeneities correlated to the variables of interest \Rightarrow Simpson's effect.
? Assume (i) at night a density of $1 \mathrm{veh} / \mathrm{h} /$ lane and traffic consisting to 50% of trucks (temporal average!), (ii) before the rush hour (still little interactions) a density of $10 \mathrm{veh} / \mathrm{h} /$ lane and 10% of trucks. Plot the corresponding two speed-density points demonstrating the apparent horror vacui. Assume as (average) desired speed $120 \mathrm{~km} / \mathrm{h}$ for cars and $80 \mathrm{~km} / \mathrm{h}$ for trucks and a reduction of $10 \mathrm{~km} / \mathrm{h}$ for cars in case (ii).
! (i) At night: $V=0.5(80+120) \mathrm{km} / \mathrm{h}=100 \mathrm{~km} / \mathrm{h}$
(ii) before the rush hour: $V=0.1 * 80+0.9 * 110 \mathrm{~km} / \mathrm{h}=107 \mathrm{~km} / \mathrm{h}$

At night, the average speed is lower than before the rush hour although neither vehicle type drives more slowly and the cars even faster: Simpson;s paradox!

Problem: List of biases in stationary detector data

? Summarize all discussed biases affecting
(i) flow, time-mean speed V, space-mean speed V_{s}, density ρ estimated by vehicle count and arithmetic speed mean as obtained from SDD,
(ii) speed-density and speed-flow scatter plots obtained from SD data

Problem: List of biases in stationary detector data

? Summarize all discussed biases affecting
(i) flow, time-mean speed V, space-mean speed V_{S}, density ρ estimated by vehicle count and arithmetic speed mean as obtained from SDD,
(ii) speed-density and speed-flow scatter plots obtained from SD data
! Time series:

- Flow $Q=n_{\text {veh }} / \Delta t_{\text {aggr }}$ and time-mean speed V : none since SDD imply time means

Problem: List of biases in stationary detector data

? Summarize all discussed biases affecting
(i) flow, time-mean speed V, space-mean speed V_{S}, density ρ estimated by vehicle count and arithmetic speed mean as obtained from SDD,
(ii) speed-density and speed-flow scatter plots obtained from SD data
! Time series:

- Flow $Q=n_{\text {veh }} / \Delta t_{\text {aggr }}$ and time-mean speed V : none since SDD imply time means
- Space-mean speed V_{s} : Overestimated by V (Leutzbach relation); would be unbiased if estimated by V_{H} and there is stationarity in the statistical sense; however, V_{H} is not available

Notice: random errors are added to all estimates

Problem: List of biases in stationary detector data

? Summarize all discussed biases affecting
(i) flow, time-mean speed V, space-mean speed V_{S}, density ρ estimated by vehicle count and arithmetic speed mean as obtained from SDD,
(ii) speed-density and speed-flow scatter plots obtained from SD data
! Time series:

- Flow $Q=n_{\text {veh }} / \Delta t_{\text {aggr }}$ and time-mean speed V : none since SDD imply time means
- Space-mean speed V_{s} : Overestimated by V (Leutzbach relation); would be unbiased if estimated by V_{H} and there is stationarity in the statistical sense; however, V_{H} is not available
- True density $\rho_{\text {real }}$ according to Edie's definition: Underestimated by $\rho=Q / V$; unbiased if estimated by Q / V_{H} and stationarity applies; partial correction for nonstationarity by $Q_{\mathrm{H}} / V_{\mathrm{H}}$ or if $\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)$ can be estimated

Notice: random errors are added to all estimates

Problem: List of biases in stationary detector data

? Summarize all discussed biases affecting
(i) flow, time-mean speed V, space-mean speed V_{S}, density ρ estimated by vehicle count and arithmetic speed mean as obtained from SDD,
(ii) speed-density and speed-flow scatter plots obtained from SD data
! Time series:

- Flow $Q=n_{\text {veh }} / \Delta t_{\text {aggr }}$ and time-mean speed V : none since SDD imply time means
- Space-mean speed V_{s} : Overestimated by V (Leutzbach relation); would be unbiased if estimated by V_{H} and there is stationarity in the statistical sense; however, V_{H} is not available
- True density $\rho_{\text {real }}$ according to Edie's definition: Underestimated by $\rho=Q / V$; unbiased if estimated by Q / V_{H} and stationarity applies; partial correction for nonstationarity by $Q_{\mathrm{H}} / V_{\mathrm{H}}$ or if $\operatorname{Cov}\left(v_{i}, \Delta t_{i}\right)$ can be estimated
! Scatter plots: additionally, Simpson's effect applies
Notice: random errors are added to all estimates

3.3. SDD
 Time Series

THE UNDERGROUND
Doors open 5 a.m.

Doors close I. 30 a.m.
WALK IN AND SEE THE SHOW NEVER A DULL MOMENT IF YOU TRAVEL

Daily time series of flow

- Only single-loop detectors needed
- Unless there is congestion, this data reflects the traffic demand
- Application mainly in transportation/traffic planning and traffic politics

Daily time series of flow

- Only single-loop detectors needed
- Unless there is congestion, this data reflects the traffic demand (why this restriction?)
- Application mainly in transportation/traffic planning and traffic politics - Traffic flow application: historic data base to improve traffic state estimation/short-term prediction for dynamic navigation

Daily time series of flow

- Only single-loop detectors needed
- Unless there is congestion, this data reflects the traffic demand (why this restriction?)
- Application mainly in transportation/traffic planning and traffic politics \Rightarrow DTV
- Traffic flow application: historic data base to improve traffic state estimation/short-term prediction for dynamic navigation

Daily time series of flow

- Only single-loop detectors needed
- Unless there is congestion, this data reflects the traffic demand (why this restriction?)
- Application mainly in transportation/traffic planning and traffic politics \Rightarrow DTV
- Traffic flow application: historic data base to improve traffic state estimation/short-term prediction for dynamic navigation

Analysis of a single detector station cannot resolve the upstream-downstream ambiguity when traffic gets free again at the cross-section

Resolution by two or more cross-sections

Ambiguity resolved!

Determining the wave velocitity

Problem: Determine the wave velocity by speed time series

Solution

Check results by approximate ground truth $\Rightarrow 2.9$

Solution

Determining the wave speed w statisticallv

Rectification bv skewed time

A5 South, May 7, 2001
Speed [km/h]

Statistical procedure for determining w

Statistical procedure for determining w

- Determine the oscillation area

Statistical procedure for determining w

- Determine the oscillation area
- Estimate inside the oscillation area the speed cross correlation functions (CCF) between the detectors k and l

$$
r_{k l}(\tau)=\frac{E\left(\left(V_{k}(t)-E\left(V_{k}\right)\right)\left(V_{l}(t+\tau)-E\left(V_{l}\right)\right)\right)}{\sqrt{\operatorname{Var}\left(V_{k}\right) \operatorname{Var}\left(V_{l}\right)}}
$$

A5 South, May 7, 2001
Speed $[k m / h]$

Statistical procedure for determining w

- Determine the oscillation area
- Estimate inside the oscillation area the speed cross correlation functions (CCF) between the detectors k and l

$$
r_{k l}(\tau)=\frac{E\left(\left(V_{k}(t)-E\left(V_{k}\right)\right)\left(V_{l}(t+\tau)-E\left(V_{l}\right)\right)\right)}{\sqrt{\operatorname{Var}\left(V_{k}\right) \operatorname{Var}\left(V_{l}\right)}}
$$

A5 South, May 7, 2001 Speed [km/h]

- Determine the time shifts $\tau_{k l}$ for the maxima of the CCF and the individual wave speed estimates $w_{k l}=\Delta x_{k l} / \tau_{k l}$ with $\Delta x_{k l}=x_{l}-x_{k}$ the distance between the respective detector stations

Statistical procedure for determining w

- Determine the oscillation area
- Estimate inside the oscillation area the speed cross correlation functions (CCF) between the detectors k and l

$$
r_{k l}(\tau)=\frac{E\left(\left(V_{k}(t)-E\left(V_{k}\right)\right)\left(V_{l}(t+\tau)-E\left(V_{l}\right)\right)\right)}{\sqrt{\operatorname{Var}\left(V_{k}\right) \operatorname{Var}\left(V_{l}\right)}}
$$

A5 South, May 7, 2001 Speed [km/h]

- Determine the time shifts $\tau_{k l}$ for the maxima of the CCF and the individual wave speed estimates $w_{k l}=\Delta x_{k l} / \tau_{k l}$ with $\Delta x_{k l}=x_{l}-x_{k}$ the distance between the respective detector stations
- The estimate W is the (weighted) mean of the $w_{k l}$

Another example

? Discuss what you see on this graphics!

Preview Lecture 04: state reconstruction
Speed [km/h]

[^0]: total: $Q^{\text {tot }}=Q_{l}+Q_{r}=2 / 3 \mathrm{veh} /$
 true value: 3 veh $/ 120 \mathrm{~m}=1$ veh $/(40 \mathrm{~m})$

[^1]: Consider the spatiotemporal region
 $A=[-80 \mathrm{~m}, 0 \mathrm{~m}] \times[0 \mathrm{~s}, 40 \mathrm{~s}]$ and estimate $\rho_{\text {Edie }}, Q_{\text {Edie }}$, and

