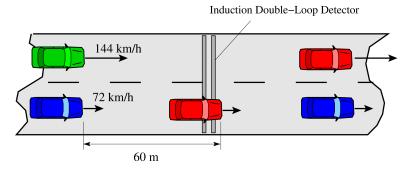
Lecture 03: Cross-Sectional Data Analysis

- 3.1. Estimating Spatial Quantities
- 3.2. Analysis I: Local Flow Characteristics
- 3.3. Analysis II: Time Series
- 3.4. Analysis III: Spatio-Temporal State

3.1. Estimating Spatial Quantities from SDD

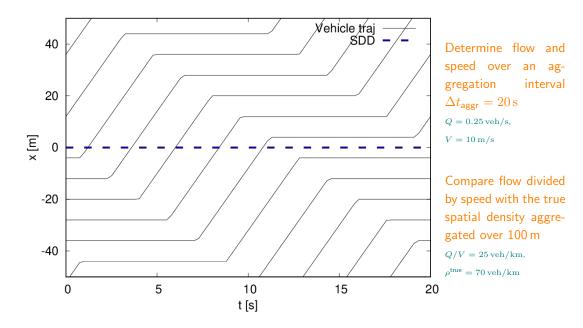
Following example shows how biased the arithmetic mean speed and "density=flow/speed" can be when naively estimating spatial quantities:



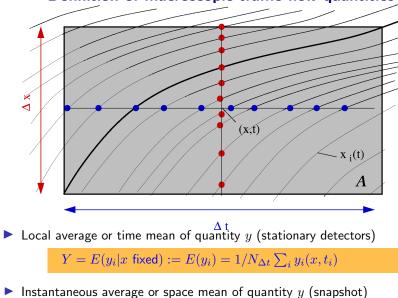
? determine Q^{tot} , V and $\rho^{\text{tot}} = Q^{\text{tot}}/V$ for the total cross section of two lanes and compare with the "true" density and spatial mean speed

Solution: left: $V_l = 40 \text{ m/s}$, $Q_l = 1/3 \text{ veh/s}$; right: $V_r = 20 \text{ m/s}$, $Q_r = 1/3 \text{ veh/s}$; total: $Q^{\text{tot}} = Q_l + Q_r = 2/3 \text{ veh/s}$, $V = 1/2(V_l + V_r) = 30 \text{ m/s}$, $\rho^{\text{tot}} = Q^{\text{tot}}/V = 1 \text{ veh/}(45 \text{ m})$, true value: 3 veh/120 m=1 veh/(40 m)

Another example of a bias

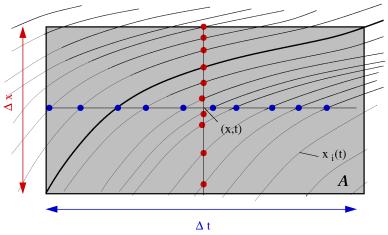


Definition of macroscopic traffic flow quantities



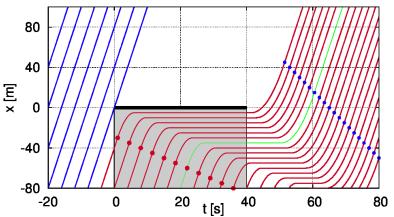
 $Y_s = E(y_i|t \text{ fixed}) := E_s(y_i) = 1/N_{\Delta x} \sum_i y_i(x_i, t)$

Definition of macroscopic traffic flow quantities II: Edie's definitions



Spatiotemporal mean (Edie's definition) of density, flow, speed:

$$\rho_{\rm Edie} = t^{\rm tot}/A, \quad Q_{\rm Edie} = x^{\rm tot}/A, \quad V_{\rm Edie} = Q_{\rm Edie}/\rho_{\rm Edie}$$



- ? Show that Edie's definition of the speed is just the total distance travelled in A divided by the total time spent in A or, equivalently, the time mean speed over all the trajectories
- ? Consider the spatiotemporal region $A = [-80 \text{ m}, 0 \text{ m}] \times [0 \text{ s}, 40 \text{ s}] \text{ and estimate } \rho_{\text{Edie}}, Q_{\text{Edie}}, \text{ and } V_{\text{Edie}} t^{\text{tot}} = (2 + 11)/2 \ 40 \text{ s} = 260 \text{ s}, x^{\text{tot}} \approx 10 * 40 \text{ m} = 400 \text{ m}, \\ \rho_{\text{Edie}} = 260 \text{ s}/3 \ 200 \text{ sm} = 80 \text{ veh/km}, Q_{\text{Edie}} = 0.125 \text{ veh/s}, \\ V_{\text{Edie}} \approx 1.5 \text{ m/s}$

- ? Estimate Q, the time mean V and $\hat{\rho} = Q/V$ in A at x = -40 m Q = 7/40 s, $V \approx V_0 = 10$ m/s, $\rho = 17.5$ veh/km
- ? Estimate ρ and the space mean V_s in Aat t = 20 s $\rho = 7/80 \text{ m} \approx 87 \text{ veh/km},$ $V_s = 2/7 \ 10 \text{ m/s} \approx 2.9 \text{ m/s}$

Leutzbach relation between space and time mean speed

Assume that the *instantaneous* (spatial) speed distribution has a density f(v). Then,

- the *partial density* of a speed layer is given by $d\rho = \rho f(v) dv$.
- Since the number of stationary detector recordings (time mean!) is proportional to the flow, the speed weighting of detector measurements is proportional to the *partial flow* dQ = v dp:

$$w(v) \, \mathrm{d}v = \frac{\mathrm{d}Q}{Q} = \frac{\rho v f(v) \, \mathrm{d}v}{\int \rho v f(v) \, \mathrm{d}v} = \frac{v f(v) \, \mathrm{d}v}{V_s}$$

 \blacktriangleright For the time-mean speed V as a function of the space-mean speed V_s , we obtain

$$V = \int vw(v) \, \mathrm{d}v = \frac{1}{V_s} \int v^2 f(v) \, \mathrm{d}v = \frac{E_s(v_i^2)}{V_s}$$

▶ With the general relation $E(X^2) = Var(X) + (E(X))^2$ also valid for spatial averages $E_s(.)$, we have $E_s(v_i^2) = Var_s(v_i) + V_s^2$, so

$$V = \frac{\mathsf{Var}_s(v_i) + V_s^2}{V_s} = V_s + \frac{\mathsf{Var}_s(v_i)}{V_s} \qquad \text{Leutzbach relation}$$

Traffic Flow Dynamics

Estimating space mean speed by harmonic averages

- ▶ Both time and space means can be applied to any function y_i of recorded single-vehicle data such as y_i = v_i or y_i = 1/v_i:
 - temporal arithmetic average: $V = E(v_i)$
 - temporal harmonic average: $V_H = 1/E(1/v_i)$
 - spatial arithmetic average: $V_s = E_s(v_i)$
- ▶ Derivation of the Leutzbach relation \rightarrow any expected time average $E(y_i)$ of data y_i can be written in terms of the spatial (!) speed distribution function f(v) via the weighting $w(v) dv = vf(v)/V_S dv$ as

$$E(y_i) = \frac{1}{V_s} \int y v f(v) \, \mathrm{d}v$$

• With $y_i = 1/v_i$, we obtain

$$\frac{1}{V_H} = E(1/v_i) = \frac{1}{V_s} \int f(v) \, \mathrm{d}v = \frac{1}{V_s}$$

The harmonic time mean speed is an unbiased estimator of the space mean speed provided stationarity (in the statistical sense, i.e., f(v) is unchanged over averaging space and time).

Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

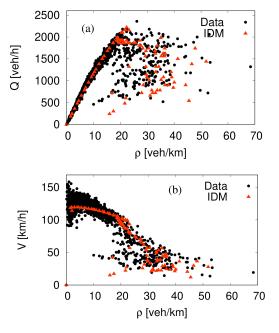
$$\begin{aligned} \frac{1}{\hat{\rho}} &= E(d_i) = E(v_{i-1}\Delta t_i) \\ &\approx E(v_i\Delta t_i) \\ &= E(v_i)E(\Delta t_i) + \operatorname{Cov}(v_i,\Delta t_i) \\ &= \frac{V}{Q} + \operatorname{Cov}(v_i,\Delta t_i) \end{aligned}$$

 \Rightarrow unbiased estimator $\hat{\rho}$ as a function of the "usual" estimator $\rho=Q/V$:

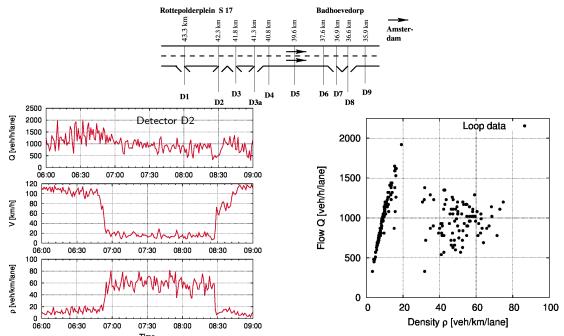
$$\hat{\rho} = \rho\left(\frac{1}{1+\rho\operatorname{Cov}(v_i,\Delta t_i)}\right)$$

? Show that the expected true density $\hat{\rho}$ is generally underestimated by $\rho = Q/V$. In which situations this bias becomes pronounced? Hint: what is the expected sign of this covariance?

Comparison with a model reveals systematic bias



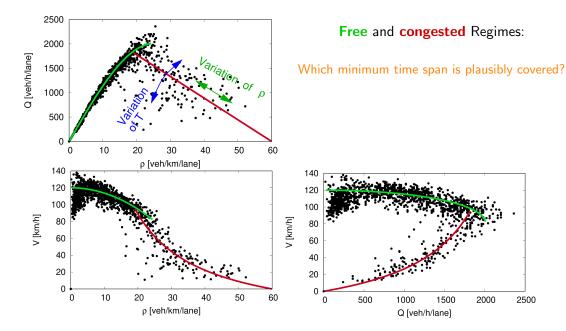
3.2. Analysis I: Local Flow Characteristics



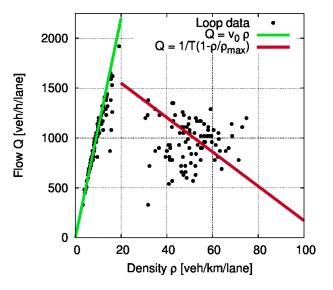
2500

2000

Flow-density-speed data and fundamental diagram

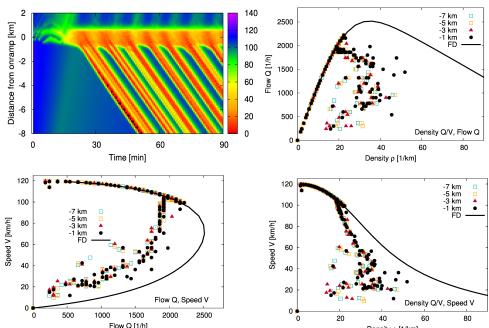


Why is the fundamental diagram so "fundamental"

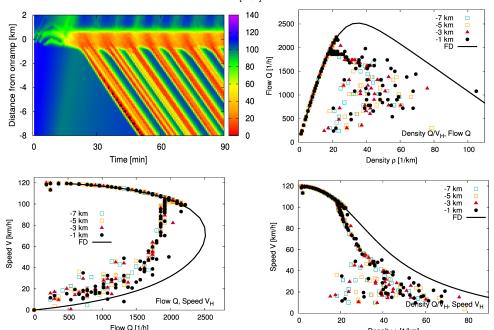


- free traffic: $Q(\rho) = V_0 \rho$
- \blacktriangleright Intersection with the abszissa: $\Rightarrow l_{\rm eff} = 1/\rho_{\rm max}$
- ► Slope $w = Q'_{\rm c}(\rho) = -l_{\rm eff}/T \Rightarrow$ wave speed w, time gap T
- Intersection with Q_{f} : \Rightarrow estimate for capacity $Q_{max} = V_0/(V_0T + l_{eff})$

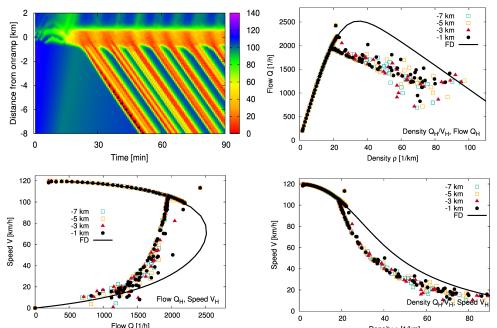
Bias check I: $\underset{\rm V\,[km/h]}{\rm flow}Q$, speed V, density $\rho=Q/V$



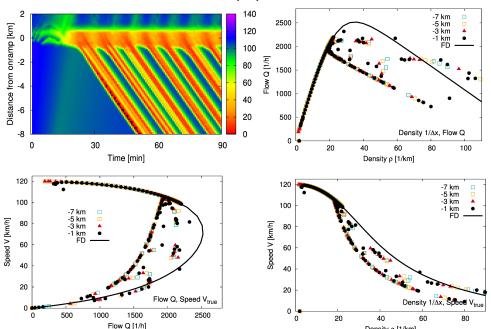
Bias II: flow $\underset{\rm V\,[km/h]}{Q}$, speed V_{H} , density Q/V_{H}



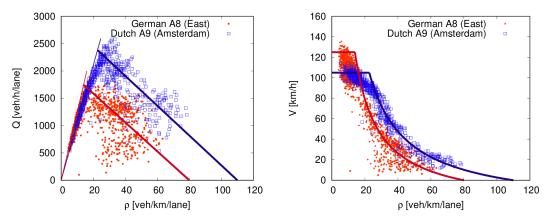
Bias III: flow Q, speed V_{H} , density $\rho = Q_{H}/V_{H} = E(1/\Delta t_{i})/V_{H}$



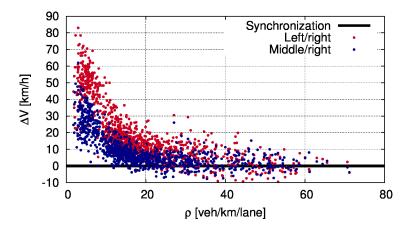
Real spatial local density, spatio-temporal local speed $_{V\,[km/h]}$



Regional and infrastructural differences

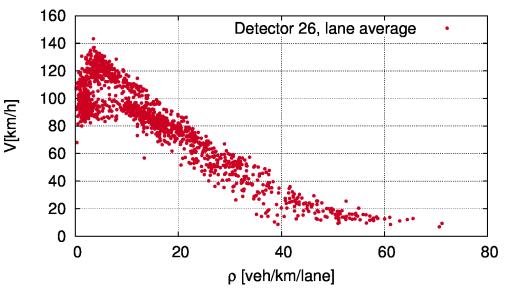


German A8-East near Munich: Higher maximum speed and lower capacity compared to the Dutch A9 near Amsterdam



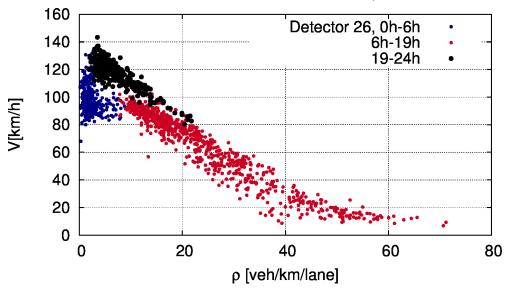
- ► Low densities \rightarrow little interactions \rightarrow nearly everybody can drive at his/her desired speed chosing the suitable lane ("fast", "middle", or "slow") $\rightarrow \Delta v$ large;
- \blacktriangleright densities near capacity: still no congestion but much interaction \rightarrow small Δv values;
- ▶ jammed region: $\Delta v \approx 0$ ("in a jam, everybody is equal")

Horror Vacui



? Is there a "fear of the empty Autobahn" (Horror Vacui)?

Horror Vacui explained: Simpson's Effect/Paradox



! Different weather and/or traffic composition and/or speed limits in the three time intervals \rightarrow Simpson's Effect

I

Problem: Simpson's effect in local flow characteristics

- ? In traffic flow data, Simpson's effect is relevant if the time variable is eliminated such as in speed-density scatter plots. Why?
- ! because (i) the vehicle and driver composition, visibility/road conditions and possibly traffic regulations change during the daytime, (ii) these changes are correlated with flow, density, and speed ⇒ sampling of heterogeneous data with heterogeneities correlated to the variables of interest ⇒ Simpson's effect.
- ? Assume (i) at night a density of 1 veh/h/lane and traffic consisting to 50% of trucks (temporal average!), (ii) before the rush hour (still little interactions) a density of 10 veh/h/lane and 10% of trucks. Plot the corresponding two speed-density points demonstrating the apparent *horror vacui*. Assume as (average) desired speed 120 km/h for cars and 80 km/h for trucks and a reduction of 10 km/h for cars in case (ii).
 - (i) At night: V = 0.5(80 + 120) km/h = 100 km/h
 - (ii) before the rush hour: V = 0.1 * 80 + 0.9 * 110 km/h = 107 km/h

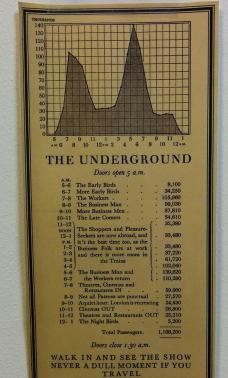
At night, the average speed is lower than before the rush hour although neither vehicle type drives more slowly and the cars even faster: Simpson;s paradox!

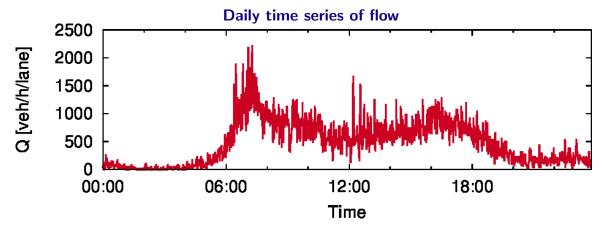
Problem: List of biases in stationary detector data

- ? Summarize all discussed biases affecting
 - (i) flow, time-mean speed V, space-mean speed $V_{\rm S}$, density ρ estimated by vehicle count and arithmetic speed mean as obtained from SDD,
 - (ii) speed-density and speed-flow scatter plots obtained from SD data
- ! Time series:
 - Flow $Q = n_{veh}/\Delta t_{aggr}$ and time-mean speed V: none since SDD imply time means
 - ► Space-mean speed V_s: Overestimated by V (Leutzbach relation); would be unbiased if estimated by V_H and there is stationarity in the statistical sense; however, V_H is not available
 - ► True density ρ_{real} according to Edie's definition: Underestimated by $\rho = Q/V$; unbiased if estimated by Q/V_{H} and stationarity applies; partial correction for nonstationarity by $Q_{\text{H}}/V_{\text{H}}$ or if $\text{Cov}(v_i, \Delta t_i)$ can be estimated
- ! Scatter plots: additionally, Simpson's effect applies

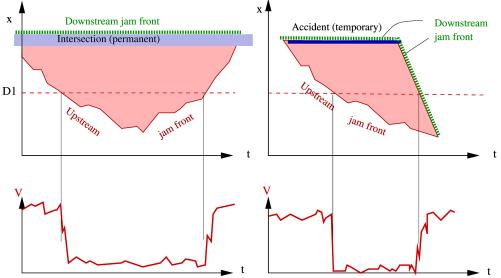
Notice: random errors are added to all estimates

3.3. SDD Time Series



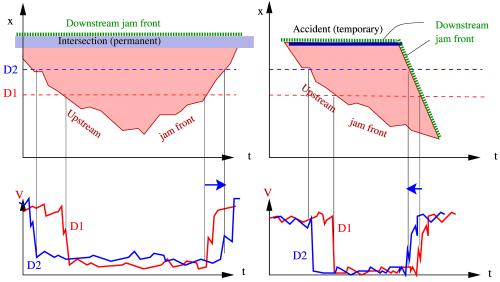


- Only single-loop detectors needed
- Unless there is congestion, this data reflects the traffic demand (why this restriction?)
- ▶ Application mainly in transportation/traffic planning and traffic politics ⇒ DTV
- Traffic flow application: historic data base to improve traffic state estimation/short-term prediction for dynamic navigation



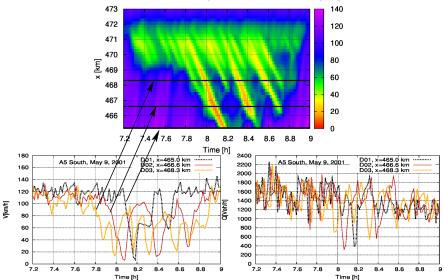
Analysis of a single detector station cannot resolve the upstream-downstream ambiguity when traffic gets free again at the cross section

Resolution by two or more cross sections

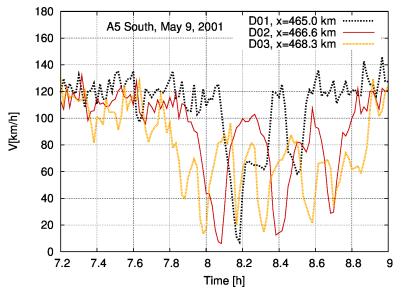


Ambiguity resolved!

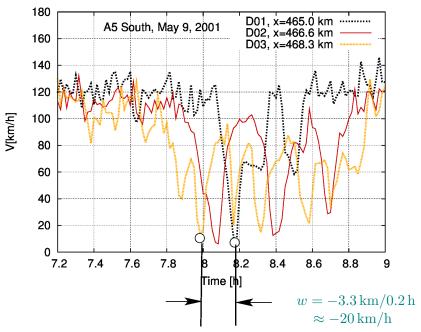
Determining the wave velocity Km/h



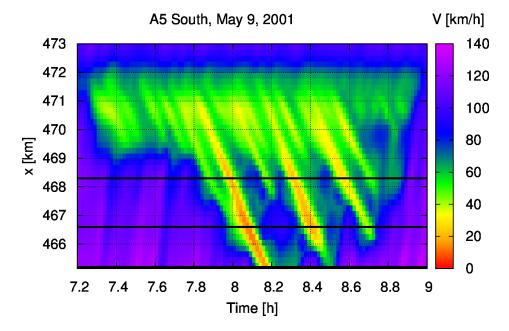
Problem: Determine the wave velocity by speed time series



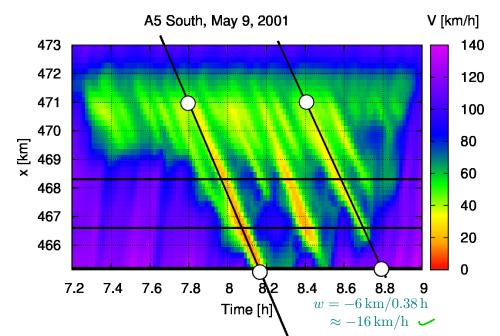
Solution



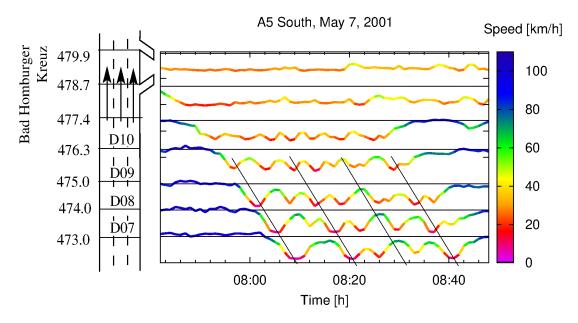
Check results by approximate ground truth \Rightarrow 2.9



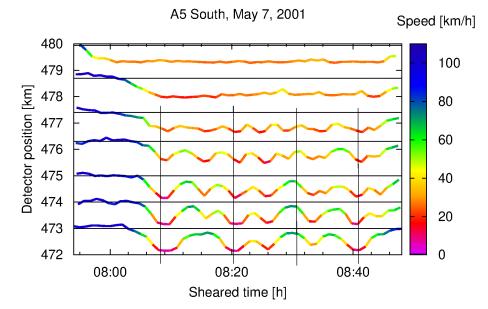
Solution



Determining the wave speed w statistically



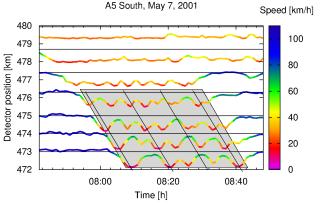
Rectification by skewed time



Statistical procedure for determining w

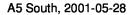
- Determine the oscillation area
- Estimate inside the oscillation area the speed cross correlation functions (CCF) between the detectors k and l

$$r_{kl}(\tau) = \frac{E\left((V_k(t) - E(V_k))(V_l(t + \tau) - E(V_l))\right)}{\sqrt{\operatorname{Var}(V_k)\operatorname{Var}(V_l)}}$$

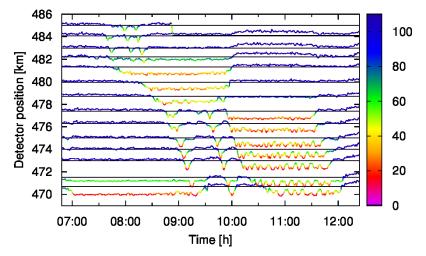


- Determine the time shifts τ_{kl} for the maxima of the CCF and the individual wave speed estimates w_{kl} = Δx_{kl}/τ_{kl} with Δx_{kl} = x_l - x_k the distance between the respective detector stations
- The estimate W is the (weighted) mean of the w_{kl}

Another example

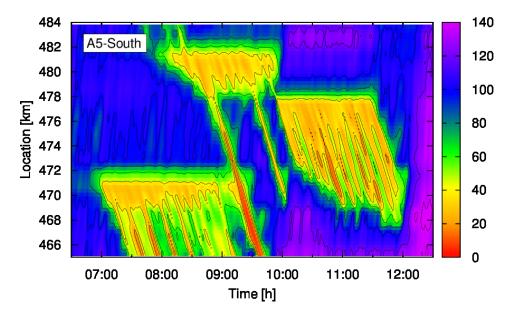


Speed [km/h]



? Discuss what you see on this graphics!

Preview Lecture 04: state reconstruction



Preview Lecture 06: Jam-front estimation

