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3.1. Estimating Spatial Quantities from SDD

Following example shows how biased the arithmetic mean speed and
“density=flow/speed” can be when naively estimating spatial quantities:

? determine Qtot, V and ρtot = Qtot/V for the total cross section of two lanes and
compare with the “true” density and spatial mean speed

Solution: left: Vl = 40m/s, Ql = 1/3 veh/s; right: Vr = 20m/s, Qr = 1/3 veh/s;

total: Qtot = Ql +Qr = 2/3 veh/s, V = 1/2(Vl + Vr) = 30m/s, ρtot = Qtot/V = 1 veh/(45m),

true value: 3 veh/120 m=1 veh/(40 m)
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Another example of a bias

Determine flow and

speed over an ag-

gregation interval

∆taggr = 20 s

Q = 0.25 veh/s,

V = 10m/s

Compare flow divided

by speed with the true

spatial density aggre-

gated over 100 m

Q/V = 25 veh/km,

ρtrue = 70 veh/km



Traffic Flow Dynamics 3. Cross-Sectional Data Analysis 3.1. Estimating Spatial Quantities

Definition of macroscopic traffic flow quantities

I Local average or time mean of quantity y (stationary detectors)

Y = E(yi|x fixed) := E(yi) = 1/N∆t

∑
i yi(x, ti)

I Instantaneous average or space mean of quantity y (snapshot)

Ys = E(yi|t fixed) := Es(yi) = 1/N∆x

∑
i yi(xi, t)
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Definition of macroscopic traffic flow quantities II: Edie’s definitions

Spatiotemporal mean (Edie’s definition) of density, flow, speed:

ρEdie = ttot/A, QEdie = xtot/A, VEdie = QEdie/ρEdie
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Problems

? Show that Edie’s definition of the speed is just the total
distance travelled in A divided by the total time spent in A or,
equivalently, the time mean speed over all the trajectories

? Consider the spatiotemporal region
A = [−80m, 0m]× [0 s, 40 s] and estimate ρEdie, QEdie, and
VEdie ttot = (2 + 11)/2 40 s = 260 s, xtot ≈ 10 ∗ 40m = 400m,

ρEdie = 260 s/3 200 sm = 80 veh/km, QEdie = 0.125 veh/s,

VEdie ≈ 1.5m/s

? Estimate Q, the time mean V and
ρ̂ = Q/V in A at x = −40m
Q = 7/40 s, V ≈ V0 = 10m/s,

ρ = 17.5 veh/km

? Estimate ρ and the space mean Vs in A
at t = 20 s
ρ = 7/80m ≈ 87 veh/km,

Vs = 2/7 10m/s ≈ 2.9m/s
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Leutzbach relation between space and time mean speed

Assume that the instantaneous (spatial) speed distribution has a density f(v). Then,

I the partial density of a speed layer is given by dρ = ρf(v) dv .

I Since the number of stationary detector recordings (time mean!) is proportional to the flow,
the speed weighting of detector measurements is proportional to the partial flow dQ = v dρ :

w(v) dv =
dQ

Q
=

ρvf(v) dv∫
ρvf(v) dv

=
vf(v) dv

Vs

I For the time-mean speed V as a function of the space-mean speed Vs, we obtain

V =

∫
vw(v) dv =

1

Vs

∫
v2f(v) dv =

Es(v
2
i )

Vs

I With the general relation E(X2) = Var(X) + (E(X))2 also valid for spatial averages Es(.),
we have Es(v

2
i ) = Vars(vi) + V 2

s , so

V =
Vars(vi) + V 2

s

Vs
= Vs +

Vars(vi)

Vs
Leutzbach relation
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Estimating space mean speed by harmonic averages

I Both time and space means can be applied to any function yi of recorded single-vehicle data
such as yi = vi or yi = 1/vi:

I temporal arithmetic average: V = E(vi)
I temporal harmonic average: VH = 1/E(1/vi)
I spatial arithmetic average: Vs = Es(vi)

I Derivation of the Leutzbach relation → any expected time average E(yi) of data yi can be
written in terms of the spatial (!) speed distribution function f(v) via the weighting
w(v) dv = vf(v)/VS dv as

E(yi) =
1

Vs

∫
yvf(v) dv

I With yi = 1/vi, we obtain

1

VH
= E(1/vi) =

1

Vs

∫
f(v) dv =

1

Vs

Vs = VH

The harmonic time mean speed is an unbiased estimator of the space mean speed provided

stationarity (in the statistical sense, i.e., f(v) is unchanged over averaging space and time).
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Estimating the density by stationary detector data (SDD)

Problem: The density is a spatial quantity but SDs provide temporal quantities.

1

ρ̂
= E(di) = E(vi−1∆ti)

≈ E(vi∆ti)

= E(vi)E(∆ti) + Cov(vi,∆ti)

=
V

Q
+ Cov(vi,∆ti)

⇒ unbiased estimator ρ̂ as a function of the “usual” estimator ρ = Q/V :

ρ̂ = ρ

(
1

1 + ρCov(vi,∆ti)

)

? Show that the expected true density ρ̂ is generally underestimated by ρ = Q/V . In which
situations this bias becomes pronounced? Hint: what is the expected sign of this covariance?
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Comparison with a model reveals systematic bias
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3.2. Analysis I: Local Flow Characteristics

Detector D2
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Flow-density-speed data and fundamental diagram

Free and congested Regimes:

Which minimum time span is plausibly covered?
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Why is the fundamental diagram so “fundamental”

I free traffic:
Q(ρ) = V0ρ

I Intersection with the abszissa:
⇒ leff = 1/ρmax

I Slope w = Q′c(ρ) = −leff/T ⇒
wave speed w, time gap T

I Intersection with Qf:
⇒ estimate for capacity
Qmax = V0/(V0T + leff)



Traffic Flow Dynamics 3. Cross-Sectional Data Analysis 3.2. Local Flow Characteristics

Bias check I: flow Q, speed V , density ρ = Q/V
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Bias II: flow Q, speed VH , density Q/VH
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Bias III: flow Q, speed VH , density ρ = QH/VH = E(1/∆ti)/VH
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Real spatial local density, spatio-temporal local speed
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Regional and infrastructural differences

I German A8-East near Munich: Higher maximum speed and lower capacity compared
to the Dutch A9 near Amsterdam
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Speed synchronisation across lanes

I Low densities → little interactions → nearly everybody can drive at his/her desired speed
chosing the suitable lane (“fast”, “middle”, or “slow”) → ∆v large;

I densities near capacity: still no congestion but much interaction → small ∆v values;

I jammed region: ∆v ≈ 0 (“in a jam, everybody is equal”)



Traffic Flow Dynamics 3. Cross-Sectional Data Analysis 3.2. Local Flow Characteristics

Horror Vacui

? Is there a “fear of the empty Autobahn” (Horror Vacui)?
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Horror Vacui explained: Simpson’s Effect/Paradox

! Different weather and/or traffic composition and/or speed limits in the three time
intervals → Simpson’s Effect
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Problem: Simpson’s effect in local flow characteristics

? In traffic flow data, Simpson’s effect is relevant if the time variable is eliminated such as in
speed-density scatter plots. Why?

! because (i) the vehicle and driver composition, visibility/road conditions and possibly traffic regulations

change during the daytime, (ii) these changes are correlated with flow, density, and speed ⇒ sampling of

heterogeneous data with heterogeneities correlated to the variables of interest ⇒ Simpson’s effect.

? Assume (i) at night a density of 1 veh/h/lane and traffic consisting to 50 % of trucks
(temporal average!), (ii) before the rush hour (still little interactions) a density of
10 veh/h/lane and 10 % of trucks. Plot the corresponding two speed-density points
demonstrating the apparent horror vacui. Assume as (average) desired speed 120 km/h for
cars and 80 km/h for trucks and a reduction of 10 km/h for cars in case (ii).

! (i) At night: V = 0.5(80 + 120) km/h = 100 km/h
(ii) before the rush hour: V = 0.1 ∗ 80 + 0.9 ∗ 110 km/h = 107 km/h

At night, the average speed is lower than before the rush hour although neither vehicle type drives more

slowly and the cars even faster: Simpson;s paradox!
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Problem: List of biases in stationary detector data

? Summarize all discussed biases affecting

(i) flow, time-mean speed V , space-mean speed VS, density ρ estimated by vehicle count
and arithmetic speed mean as obtained from SDD,

(ii) speed-density and speed-flow scatter plots obtained from SD data

! Time series:

I Flow Q = nveh/∆taggr and time-mean speed V : none since SDD imply time means
I Space-mean speed Vs: Overestimated by V (Leutzbach relation); would be unbiased if

estimated by VH and there is stationarity in the statistical sense; however, VH is not
available

I True density ρreal according to Edie’s definition: Underestimated by ρ = Q/V ; unbiased
if estimated by Q/VH and stationarity applies; partial correction for nonstationarity by
QH/VH or if Cov(vi,∆ti) can be estimated

! Scatter plots: additionally, Simpson’s effect applies

Notice: random errors are added to all estimates
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3.3. SDD
Time Series
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Daily time series of flow

I Only single-loop detectors needed

I Unless there is congestion, this data reflects the traffic demand (why this restriction?)

I Application mainly in transportation/traffic planning and traffic politics ⇒ DTV

I Traffic flow application: historic data base to improve traffic state
estimation/short-term prediction for dynamic navigation
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3.4. Analysis III: Spatio-Temporal State

Analysis of a single detector station cannot resolve the upstream-downstream am-
biguity when traffic gets free again at the cross section
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Resolution by two or more cross sections

Ambiguity resolved!
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Determining the wave velocity
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Problem: Determine the wave velocity by speed time series
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Solution

w = −3.3 km/0.2 h
≈ −20 km/h
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Check results by approximate ground truth ⇒ 2.9
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Solution

w = −6 km/0.38 h
≈ −16 km/h
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Determining the wave speed w statistically
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Rectification by skewed time
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Statistical procedure for determining w

I Determine the oscillation area

I Estimate inside the oscillation area the speed cross correlation functions
(CCF) between the detectors k and l

rkl(τ) =
E
(
(Vk(t)− E(Vk))(Vl(t+ τ)− E(Vl))

)√
Var(Vk)Var(Vl)

I Determine the time shifts τkl for
the maxima of the CCF and the
individual wave speed estimates
wkl = ∆xkl/τkl with
∆xkl = xl − xk the distance
between the respective detector
stations

I The estimate W is the (weighted)
mean of the wkl
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Another example

? Discuss what you see on this graphics!
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Preview Lecture 04: state reconstruction
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Preview Lecture 06: Jam-front estimation

You will learn how to do that three lessons ahead!
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