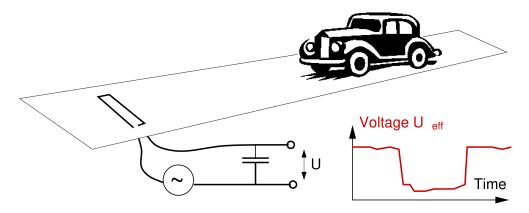
Lecture 2: Stationary Detector Data

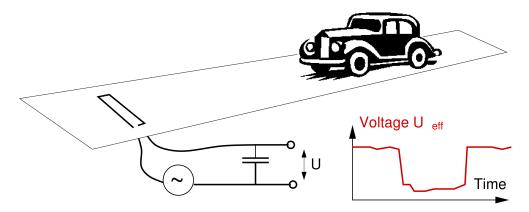
- 2.1. Stationary Detector Data (SDD) and How to Obtain Them
- 2.2. Single-Vehicle Data
- 2.3. Aggregated Data



► Vehicle drives over a loop detector ⇒ inductance of the loop increased upon driving over it ⇒ circuit gets out of tune.

• Other means: pneumatic tubes, IR light barriers, radar/lidar

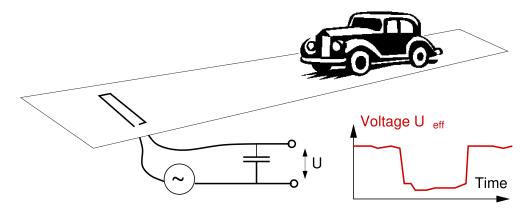
? Discuss the advantages/disadvantages of induction loop detectors wrt. other sensors.



Vehicle drives over a loop detector ⇒ inductance of the loop increased upon driving over it ⇒ circuit gets out of tune.

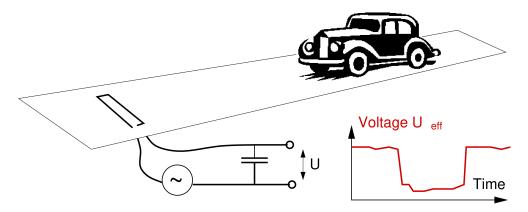
Other means: pneumatic tubes, IR light barriers, radar/lidar

? Discuss the advantages/disadvantages of induction loop detectors wrt. other sensors.



- Vehicle drives over a loop detector ⇒ inductance of the loop increased upon driving over it ⇒ circuit gets out of tune.
- > Other means: pneumatic tubes, IR light barriers, radar/lidar

? Discuss the advantages/disadvantages of induction loop detectors wrt. other sensors.

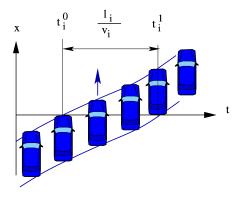


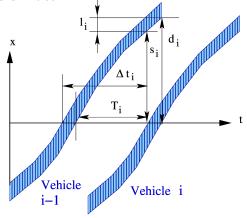
- Vehicle drives over a loop detector ⇒ inductance of the loop increased upon driving over it ⇒ circuit gets out of tune.
- > Other means: pneumatic tubes, IR light barriers, radar/lidar
- ? Discuss the advantages/disadvantages of induction loop detectors wrt. other sensors.

Loop/double loop detectors are everywhere ...

2. Cross-Sectional Data

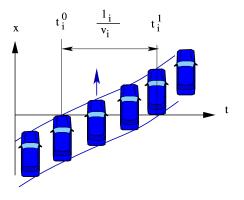
2.2. Single-Vehicle Data

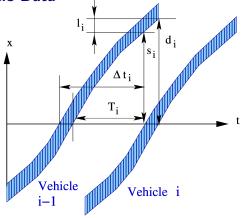




2. Cross-Sectional Data

2.2. Single-Vehicle Data

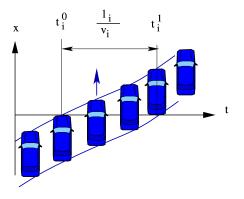


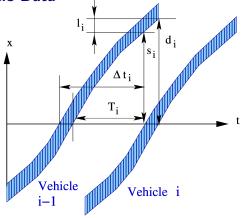


メロト メロトメモトメモト

ъ

• Occupancy time: $t_i^1 - t_i^0$ (single loops OK)

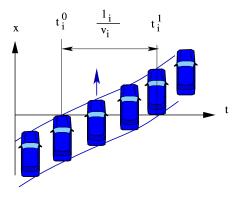


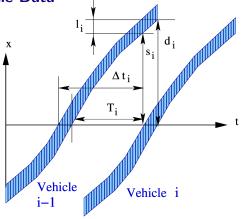


A D F A B F A B F A B F

ъ

- Occupancy time: $t_i^1 t_i^0$ (single loops OK)
- ► (Time) headway: Δt_i = t⁰_i − t⁰_{i-1} (single loops OK)



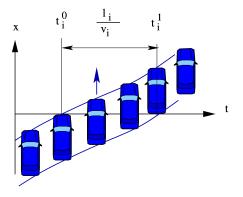


イロト イポト イヨト イヨト

∃ •

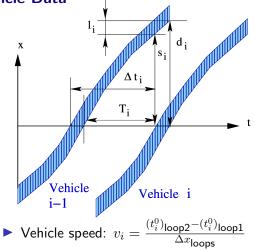
- Occupancy time: $t_i^1 t_i^0$ (single loops OK)
- ► (Time) headway: Δt_i = t⁰_i − t⁰_{i-1} (single loops OK)

• Time gap: $T_i = t_i^0 - t_{i-1}^1 = \Delta t_i - \frac{v_{i-1}}{l_{i-1}}$ (single loops OK)



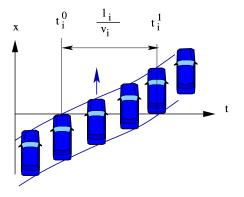
- Occupancy time: $t_i^1 t_i^0$ (single loops OK)
- ► (Time) headway: Δt_i = t⁰_i − t⁰_{i-1} (single loops OK)

• Time gap: $T_i = t_i^0 - t_{i-1}^1 = \Delta t_i - \frac{v_{i-1}}{l_{i-1}}$ (single loops OK)



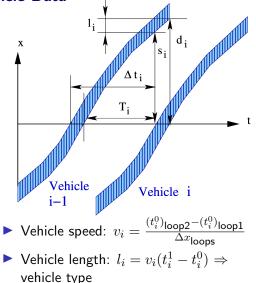
イロト イポト イヨト イヨト

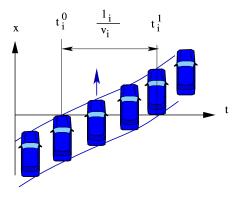
∃ •



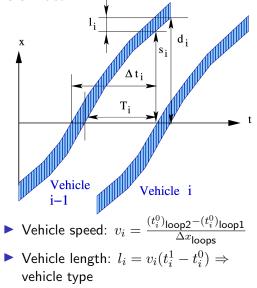
- Occupancy time: $t_i^1 t_i^0$ (single loops OK)
- ► (Time) headway: Δt_i = t⁰_i − t⁰_{i-1} (single loops OK)

• Time gap: $T_i = t_i^0 - t_{i-1}^1 = \Delta t_i - \frac{v_{i-1}}{l_{i-1}}$ (single loops OK)

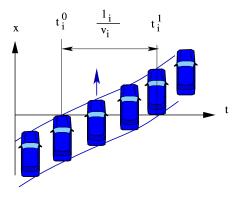




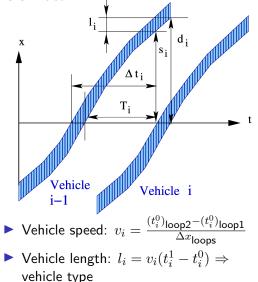
- Occupancy time: $t_i^1 t_i^0$ (single loops OK)
- ► (Time) headway: Δt_i = t⁰_i − t⁰_{i-1} (single loops OK)
- Time gap: $T_i = t_i^0 t_{i-1}^1 = \Delta t_i \frac{v_{i-1}}{l_{i-1}}$ (single loops OK)



• Distance headway: $d_i = v_{i-1}\Delta t_i$

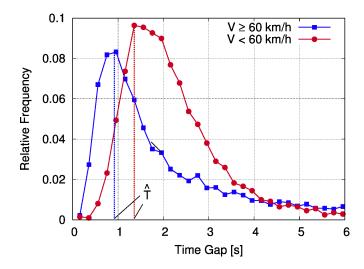


- Occupancy time: $t_i^1 t_i^0$ (single loops OK)
- ► (Time) headway: Δt_i = t⁰_i − t⁰_{i-1} (single loops OK)
- Time gap: $T_i = t_i^0 t_{i-1}^1 = \Delta t_i \frac{v_{i-1}}{l_{i-1}}$ (single loops OK)



- **• Distance headway**: $d_i = v_{i-1}\Delta t_i$
- (Distance) gap: $s_i = d_i l_{i-1}$

Application: Density functions of time gap distributions

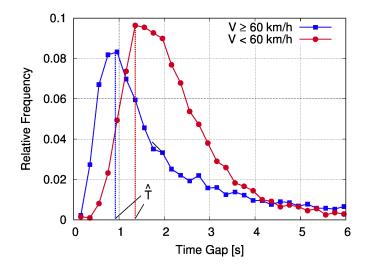


? Compare with the German driving rule "keep a gap of at least half the speedometer reading"

Compare with the US rule "keep an additional vehicle length distance per 5 mph"

<□> < ()> < ()> < ()> < ()> < ()> < ()> < ()</p>

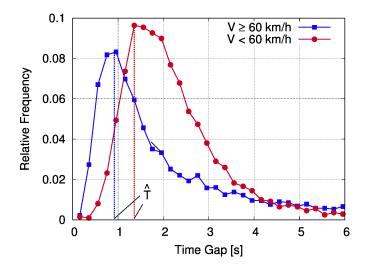
Application: Density functions of time gap distributions



? Compare with the German driving rule "keep a gap of at least half the speedometer reading"

Compare with the US rule "keep an additional vehicle length distance per 5 mph"

Application: Density functions of time gap distributions



? Compare with the German driving rule "keep a gap of at least half the speedometer reading"

? Compare with the US rule "keep an additional vehicle length distance per 5 mph"

▲ロト★御ト★臣ト★臣ト 臣 の

Distance rules

Keep a gap of at least half the speedometer reading: Units: Germany \rightarrow gap in meter, speedometer reading in km/h

Keep a gap of at least half the speedometer reading: Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\frac{s}{1\,\mathrm{m}} \geq \frac{1}{2} \frac{v}{\mathrm{km/h}}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣・の

Keep a gap of at least half the speedometer reading: Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\begin{array}{rcl} \displaystyle \frac{s}{1\,\mathrm{m}} & \geq & \displaystyle \frac{1}{2} \; \frac{v}{\mathrm{km/h}} \\ \displaystyle T = \displaystyle \frac{s}{v} & = & \displaystyle \frac{1}{2} \; \frac{\mathrm{m}}{\mathrm{km/h}} \end{array}$$

▲□▶ ▲舂▶ ▲臣▶ ▲臣▶ 三臣 - の

▲ロト★御ト★臣ト★臣ト 臣 の

Distance rules

Keep a gap of at least half the speedometer reading: Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\begin{array}{rcl} \displaystyle \frac{s}{1\,\mathrm{m}} & \geq & \displaystyle \frac{1}{2} \; \frac{v}{\mathrm{km/h}} \\ \\ \displaystyle T = \frac{s}{v} & = & \displaystyle \frac{1}{2} \; \frac{\mathrm{m}}{\mathrm{km/h}} \\ \\ \displaystyle & = & \displaystyle \frac{1}{2} \; \frac{\mathrm{m}}{\frac{1}{3.6}\mathrm{m/s}} \end{array}$$

Keep a gap of at least half the speedometer reading: Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\frac{s}{1 \text{ m}} \geq \frac{1}{2} \frac{v}{\text{ km/h}}$$
$$T = \frac{s}{v} = \frac{1}{2} \frac{\text{m}}{\text{ km/h}}$$
$$= \frac{1}{2} \frac{\text{m}}{\frac{1}{3.6} \text{m/s}}$$
$$= \underline{1.8 \text{ s}}$$

(日)

(日)

Distance rules

Keep a gap of at least half the speedometer reading:

Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\frac{s}{1 \text{ m}} \geq \frac{1}{2} \frac{v}{\text{ km/h}}$$
$$T = \frac{s}{v} = \frac{1}{2} \frac{\text{m}}{\text{ km/h}}$$
$$= \frac{1}{2} \frac{\text{m}}{\frac{1}{3.6} \text{m/s}}$$
$$= \underline{1.8 \text{ s}}$$

Keep an additional vehicle length distance per 5 mph: Assume a vehicle length of 5 m (US vehicles are big!):

Keep a gap of at least half the speedometer reading:

Traffic Flow Dynamics

Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\frac{s}{1 \text{ m}} \geq \frac{1}{2} \frac{v}{\text{ km/h}}$$
$$T = \frac{s}{v} = \frac{1}{2} \frac{\text{m}}{\text{ km/h}}$$
$$= \frac{1}{2} \frac{\text{m}}{\frac{1}{3.6} \text{m/s}}$$
$$= \underline{1.8 \text{ s}}$$

Keep an additional vehicle length distance per 5 mph: Assume a vehicle length of 5 m (US vehicles are big!):

$$T = \frac{\Delta s}{\Delta v}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣・の

Keep a gap of at least half the speedometer reading:

Traffic Flow Dynamics

Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\frac{s}{1 \text{ m}} \geq \frac{1}{2} \frac{v}{\text{ km/h}}$$
$$T = \frac{s}{v} = \frac{1}{2} \frac{\text{m}}{\text{ km/h}}$$
$$= \frac{1}{2} \frac{\text{m}}{\frac{1}{3.6} \text{m/s}}$$
$$= \underline{1.8 \text{ s}}$$

Keep an additional vehicle length distance per 5 mph: Assume a vehicle length of 5 m (US vehicles are big!):

$$T = \frac{\Delta s}{\Delta v}$$
$$= \frac{5 \text{ m}}{5 \text{ mph}}$$

Keep a gap of at least half the speedometer reading:

Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\frac{s}{1 \text{ m}} \geq \frac{1}{2} \frac{v}{\text{ km/h}}$$
$$T = \frac{s}{v} = \frac{1}{2} \frac{\text{m}}{\text{ km/h}}$$
$$= \frac{1}{2} \frac{\text{m}}{\frac{1}{3.6} \text{m/s}}$$
$$= \frac{1.8 \text{ s}}{1.8 \text{ s}}$$

Keep an additional vehicle length distance per 5 mph: Assume a vehicle length of 5 m (US vehicles are big!):

$$T = \frac{\Delta s}{\Delta v}$$
$$= \frac{5 \text{ m}}{5 \text{ mph}}$$
$$= \frac{1 \text{ m}}{\frac{1.6}{3.6} \text{ m/s}}$$

<ロト < 回 ト < 臣 ト < 臣 ト 三 の</p>

Keep a gap of at least half the speedometer reading:

Traffic Flow Dynamics

Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\frac{s}{1 \text{ m}} \geq \frac{1}{2} \frac{v}{\text{ km/h}}$$
$$T = \frac{s}{v} = \frac{1}{2} \frac{\text{m}}{\text{ km/h}}$$
$$= \frac{1}{2} \frac{\text{m}}{\frac{1}{3.6} \text{ m/s}}$$
$$= 1.8 \text{ s}$$

Keep an additional vehicle length distance per 5 mph: Assume a vehicle length of 5 m (US vehicles are big!):

Т	=	$\frac{\Delta s}{\Delta v}$
	=	$\frac{5\mathrm{m}}{5\mathrm{mph}}$
	=	$\frac{1\mathrm{m}}{\frac{1.6}{3.6}\mathrm{m/s}}$
	=	$2.25\mathrm{s}$

(ロ)

Most detectors stations *aggregate* the single-vehicle information over fixed **aggregation time intervals** Δt and transmit only the aggregated **macroscopic** data to the traffic control center.

Flow
$$Q(x,t) = \frac{\Delta N}{\Delta t} = 1/E(\Delta t_i)$$

where the expectation $E(.)$ is just the arithmetic mean over the y_i : $E(y_i) = \frac{1}{\Delta t} \sum_{i=i_0}^{i_0 + \Delta N - 1} y_i$
Occupancy $\mathcal{O}(x,t) = \frac{\Delta N E(t_i^1 - t_i^0)}{\Delta t} = Q(x,t)E(t_i^1 - t_i^0)$
(Arithmetic mean) Second $V(x,t) = E(x)$

Useful but generally not known:

- ► Harmonic mean speed $V_{\mathsf{H}}(x,t) = 1/E(1/v_i)$
- Harmonic flow $Q^*(x,t) = E(1/\Delta t_i)$

Most detectors stations *aggregate* the single-vehicle information over fixed **aggregation time intervals** Δt and transmit only the aggregated **macroscopic** data to the traffic control center.

Flow
$$Q(x,t) = \frac{\Delta N}{\Delta t} = 1/E \left(\Delta t_i\right)$$

where the **expectation** E(.) is just the arithmetic mean over the microscopic data y_i : $E(y_i) = \frac{1}{\Delta t} \sum_{i=i_0}^{i_0 + \Delta N - 1} y_i$

• Occupancy
$$\mathcal{O}(x,t) = \frac{\Delta N \ E \left(t_i^1 - t_i^0\right)}{\Delta t} = Q(x,t) E \left(t_i^1 - t_i^0\right)$$

► (Arithmetic mean) Speed $V(x,t) = E(v_i)$ (double loops)

Useful but generally not known:

► Harmonic mean speed $V_{\rm H}(x,t) = 1/E(1/v_i)$

• Harmonic flow $Q^*(x,t) = E(1/\Delta t_i)$

<ロト < 同ト < ヨト < ヨト = ラ の

2.3. Aggregated Data

Most detectors stations *aggregate* the single-vehicle information over fixed **aggregation time intervals** Δt and transmit only the aggregated **macroscopic** data to the traffic control center.

Flow
$$Q(x,t) = \frac{\Delta N}{\Delta t} = 1/E \left(\Delta t_i\right)$$

where the **expectation** E(.) is just the arithmetic mean over the microscopic data y_i : $E(y_i) = \frac{1}{\Delta t} \sum_{i=i_0}^{i_0 + \Delta N - 1} y_i$

Occupancy
$$\mathcal{O}(x,t) = \frac{\Delta N \ E\left(t_i^1 - t_i^0\right)}{\Delta t} = Q(x,t)E\left(t_i^1 - t_i^0\right)$$

► (Arithmetic mean) Speed $V(x,t) = E(v_i)$ (double loops

Useful but generally not known:

▶ Harmonic mean speed V_H(x, t) = 1/E(1/v_i)
 ▶ Harmonic flow Q^{*}(x, t) = E(1/\Delta t_i)

Most detectors stations *aggregate* the single-vehicle information over fixed **aggregation time intervals** Δt and transmit only the aggregated **macroscopic** data to the traffic control center.

Flow
$$Q(x,t) = \frac{\Delta N}{\Delta t} = 1/E \left(\Delta t_i\right)$$

where the **expectation** E(.) is just the arithmetic mean over the microscopic data y_i : $E(y_i) = \frac{1}{\Delta t} \sum_{i=i_0}^{i_0 + \Delta N - 1} y_i$

• Occupancy
$$\mathcal{O}(x,t) = \frac{\Delta N \ E\left(t_i^1 - t_i^0\right)}{\Delta t} = Q(x,t)E\left(t_i^1 - t_i^0\right)$$

• (Arithmetic mean) Speed $V(x,t) = E(v_i)$ (double loops)

Useful but generally not known:

▶ Harmonic mean speed V_H(x, t) = 1/E (1/v_i)
 ▶ Harmonic flow Q^{*}(x, t) = E (1/∆t_i)

Most detectors stations *aggregate* the single-vehicle information over fixed **aggregation time intervals** Δt and transmit only the aggregated **macroscopic** data to the traffic control center.

Flow
$$Q(x,t) = \frac{\Delta N}{\Delta t} = 1/E \left(\Delta t_i\right)$$

where the **expectation** E(.) is just the arithmetic mean over the microscopic data y_i : $E(y_i) = \frac{1}{\Delta t} \sum_{i=i_0}^{i_0 + \Delta N - 1} y_i$

• Occupancy
$$\mathcal{O}(x,t) = \frac{\Delta N \ E\left(t_i^1 - t_i^0\right)}{\Delta t} = Q(x,t)E\left(t_i^1 - t_i^0\right)$$

► (Arithmetic mean) Speed $V(x,t) = E(v_i)$ (double loops)

Useful but generally not known:

Harmonic mean speed V_H(x,t) = 1/E (1/v_i)
 Harmonic flow Q^{*}(x,t) = E (1/\Delta t_i)

Most detectors stations *aggregate* the single-vehicle information over fixed **aggregation time intervals** Δt and transmit only the aggregated **macroscopic** data to the traffic control center.

Flow
$$Q(x,t) = \frac{\Delta N}{\Delta t} = 1/E \left(\Delta t_i\right)$$

where the **expectation** E(.) is just the arithmetic mean over the microscopic data y_i : $E(y_i) = \frac{1}{\Delta t} \sum_{i=i_0}^{i_0 + \Delta N - 1} y_i$

• Occupancy
$$\mathcal{O}(x,t) = \frac{\Delta N \ E\left(t_i^1 - t_i^0\right)}{\Delta t} = Q(x,t)E\left(t_i^1 - t_i^0\right)$$

► (Arithmetic mean) Speed $V(x,t) = E(v_i)$ (double loops)

Useful but generally not known:

Harmonic mean speed V_H(x, t) = 1/E (1/v_i)
Harmonic flow Q^{*}(x, t) = E (1/\Delta t_i)

Fundamental Diagram from Traffic-simulation.de

