Lecture 2: Stationary Detector Data

- 2.1. Stationary Detector Data (SDD) and How to Obtain Them
- 2.2. Single-Vehicle Data
- 2.3. Aggregated Data

2.1. Stationary Detector Data (SDD) and How to Obtain Them

- ► Vehicle drives over a loop detector ⇒ inductance of the loop increased upon driving over it ⇒ circuit gets out of tune.
- Other means: pneumatic tubes, IR light barriers, radar/lidar
- ? Discuss the advantages/disadvantages of induction loop detectors wrt. other sensors.

Loop/double loop detectors are everywhere ...

2.2. Single-Vehicle Data

- Occupancy time: $t_i^1 t_i^0$ (single loops OK)
- ► (Time) headway: Δt_i = t⁰_i − t⁰_{i-1} (single loops OK)
- Time gap: $T_i = t_i^0 t_{i-1}^1 = \Delta t_i \frac{v_{i-1}}{l_{i-1}}$ (single loops OK)

- Vehicle speed: $v_i = \frac{(t_i^0)_{\text{loop2}} (t_i^0)_{\text{loop1}}}{\Delta x_{\text{loops}}}$
- ▶ Vehicle length: $l_i = v_i(t_i^1 t_i^0) \Rightarrow$ vehicle type
- **• Distance headway**: $d_i = v_{i-1}\Delta t_i$
- (Distance) gap: $s_i = d_i l_{i-1}$

Application: Density functions of time gap distributions

? Compare with the German driving rule "keep a gap of at least half the speedometer reading"

? Compare with the US rule "keep an additional vehicle length distance per 5 mph"

Distance rules

Keep a gap of at least half the speedometer reading:

Units: Germany \rightarrow gap in meter, speedometer reading in km/h

$$\frac{s}{1 \text{ m}} \geq \frac{1}{2} \frac{v}{\text{ km/h}}$$
$$T = \frac{s}{v} = \frac{1}{2} \frac{\text{m}}{\text{ km/h}}$$
$$= \frac{1}{2} \frac{\text{m}}{\frac{1}{3.6} \text{m/s}}$$
$$= 1.8 \text{ s}$$

Keep an additional vehicle length distance per 5 mph: Assume a vehicle length of 5 m (US vehicles are big!):

Т	=	$\frac{\Delta s}{\Delta v}$
	=	$\frac{5\mathrm{m}}{5\mathrm{mph}}$
	=	$\frac{1\mathrm{m}}{\frac{1.6}{3.6}\mathrm{m/s}}$
	=	$2.25\mathrm{s}$

2.3. Aggregated Data

Most detectors stations *aggregate* the single-vehicle information over fixed **aggregation** time intervals Δt and transmit only the aggregated macroscopic data to the traffic control center.

Flow
$$Q(x,t) = \frac{\Delta N}{\Delta t} = 1/E (\Delta t_i)$$

where the expectation E(.) is just the arithmetic mean over the microscopic data y_i : $E(y_i) = \frac{1}{\Delta t} \sum_{i=i_0}^{i_0 + \Delta N - 1} y_i$

• Occupancy
$$\mathcal{O}(x,t) = \frac{\Delta N \ E\left(t_i^1 - t_i^0\right)}{\Delta t} = Q(x,t)E\left(t_i^1 - t_i^0\right)$$

► (Arithmetic mean) Speed $V(x,t) = E(v_i)$ (double loops)

Useful but generally not known:

Harmonic mean speed V_H(x, t) = 1/E (1/v_i)
Harmonic flow Q^{*}(x, t) = E (1/\Delta t_i)

Fundamental Diagram from Traffic-simulation.de

