Lecture 2: Stationary Detector Data

-2.1. Stationary Detector Data (SDD) and How to Obtain Them

- 2.2. Single-Vehicle Data
- 2.3. Aggregated Data

2.1. Stationary Detector Data (SDD) and How to Obtain Them

- Vehicle drives over a loop detector \Rightarrow inductance of the loop increased upon driving over it \Rightarrow circuit gets out of tune.
- Other means: pneumatic tubes, IR light barriers, radar/lidar
? Discuss the advantages/disadvantages of induction loop detectors wrt. other sensors.

2.2. Single-Vehicle Data

- Occupancy time: $t_{i}^{1}-t_{i}^{0}$ (single loops OK)
- (Time) headway: $\Delta t_{i}=t_{i}^{0}-t_{i-1}^{0}$ (single loops OK)
- Time gap: $T_{i}=t_{i}^{0}-t_{i-1}^{1}=\Delta t_{i}-\frac{v_{i-1}}{l_{i-1}}$ (single loops OK)

X

- Vehicle speed: $v_{i}=\frac{\left(t_{i}^{0}\right)_{\text {loop } 2}-\left(t_{i}^{0}\right)_{\text {loop } 1}}{\Delta x_{\text {loops }}}$
- Vehicle length: $l_{i}=v_{i}\left(t_{i}^{1}-t_{i}^{0}\right) \Rightarrow$ vehicle type
- Distance headway: $d_{i}=v_{i-1} \Delta t_{i}$
- (Distance) gap: $s_{i}=d_{i}-l_{i-1}$

Application: Density functions of time gap distributions

? Compare with the German driving rule "keep a gap of at least half the speedometer reading"
? Compare with the US rule "keep an additional vehicle length distance per 5 mph "

Distance rules

Keep a gap of at least half the speedometer reading:
Units: Germany \rightarrow gap in meter, speedometer reading in km / h

$$
\begin{aligned}
\frac{s}{1 \mathrm{~m}} & \geq \frac{1}{2} \frac{v}{\mathrm{~km} / \mathrm{h}} \\
T=\frac{s}{v} & =\frac{1}{2} \frac{\mathrm{~m}}{\mathrm{~km} / \mathrm{h}} \\
& =\frac{1}{2} \frac{\mathrm{~m}}{\frac{1}{3.6} \mathrm{~m} / \mathrm{s}} \\
& =\underline{\underline{1.8 \mathrm{~s}}}
\end{aligned}
$$

Keep an additional vehicle length

 distance per 5 mph :Assume a vehicle length of 5 m (US vehicles are big!):

$$
\begin{aligned}
T & =\frac{\Delta s}{\Delta v} \\
& =\frac{5 \mathrm{~m}}{5 \mathrm{mph}} \\
& =\frac{1 \mathrm{~m}}{\frac{1.6}{3.6} \mathrm{~m} / \mathrm{s}} \\
& =\underline{\underline{2.25 \mathrm{~s}}}
\end{aligned}
$$

2.3. Aggregated Data

Most detectors stations aggregate the single-vehicle information over fixed aggregation time intervals Δt and transmit only the aggregated macroscopic data to the traffic control center.

- Flow $\quad Q(x, t)=\frac{\Delta N}{\Delta t}=1 / E\left(\Delta t_{i}\right)$
where the expectation $E($.$) is just the arithmetic mean over the microscopic data$ $y_{i}: E\left(y_{i}\right)=\frac{1}{\Delta t} \sum_{i=i_{0}}^{i_{0}+\Delta N-1} y_{i}$
- Occupancy $\mathcal{O}(x, t)=\frac{\Delta N E\left(t_{i}^{1}-t_{i}^{0}\right)}{\Delta t}=Q(x, t) E\left(t_{i}^{1}-t_{i}^{0}\right)$
- (Arithmetic mean) Speed $V(x, t)=E\left(v_{i}\right) \quad$ (double loops)

Useful but generally not known:

- Harmonic mean speed $\quad V_{\mathrm{H}}(x, t)=1 / E\left(1 / v_{i}\right)$
- Harmonic flow
$Q^{*}(x, t)=E\left(1 / \Delta t_{i}\right)$

Fundamental

Diagram from

Traffic-simulation.de

