

"Friedrich List" Faculty of Transport and Traffic Sciences Chair of Econometrics and Statistics, esp. in the Transport Sector

Traffic Flow Dynamics and Simulation

SS 2024, Solutions to Work Sheet 1, page 1

Solution to Problem 1.1: Trajectory data

(a) Local macroscopic quantities, e.g., the density $\rho(x, t)$ only make sense if (i) the spatiotemporal aggregation region includes at least a few trajectories, (ii) there are no significant changes in the average microscopic state (speed: gradient of trajectories; density: inverse of average distance between trajectories).

For the free traffic, at least, say, 5 trajectories are contained for time intervals above 10 s and/or space intervals of more than 100 m (only one criterion is needed). For congested traffic, we need 50 s and/or 50 m. The second criterion of steady state is also satisfied for the proposed regions, though only marginally for the congested case.

- (b) Region for free traffic $[10 \text{ s}, 30 \text{ s}] \times [20 \text{ m}, 80 \text{ m}]$:
 - Flow $Q = 12 \, {\rm Fz}/20 \, {\rm s} = 2 \, 160 \, {\rm Fz/h}$
 - Density $\rho = 3 \,\mathrm{Fz}/60 \,\mathrm{m} = 50 \,\mathrm{Fz/km}$
 - Speed by trajectory gradient: V = 60 m/5 s = 12 m/s = 43.2 km/h
- (c) Region for congested traffic $[50 \text{ s}, 60 \text{ s}] \times [40 \text{ m}, 100 \text{ m}]$:
 - Flow $Q = 2 \, \text{Fz} / 10 \, \text{s} = 720 \, \text{Fz} / \text{h}$
 - Density $\rho = 6 \operatorname{Fz}/60 \operatorname{m} = \underline{100 \operatorname{Fz}/\operatorname{km}}$
 - Speed by gradients: $V = 20 \text{ m}/10 \text{ s} = 2 \text{ m/s} = \frac{7.2 \text{ km/h}}{20 \text{ m}}$
 - Speed by hydrodynamic relation:

By chance, both methods give an identical outcome. This is pure "luck". Differences of up to 20% would be OK in view of the nonperfect stationarity in the congested region and the discretisation (counting) ambiguities

(d) Propagation velocity

$$c \approx -\frac{200 \,\mathrm{m}}{(60 - 22) \,\mathrm{s}} = -\frac{200 \,\mathrm{m}}{38 \,\mathrm{s}} = -5.3 \,\mathrm{m/s} = -19 \,\mathrm{km/h}$$

Because of the negative sign, the propagation is *against* the driving direction.

www.mtreiber.de/Vkmod	Traffic Simulation, SS 2024	Solutions to Tutorial 1, page 1
-----------------------	-----------------------------	---------------------------------

"Friedrich List" Faculty of Transport and Traffic Sciences Chair of Econometrics and Statistics, esp. in the Transport Sector

(e) Actual travel time through the region [0 m, 200 m]: 35 s

.

Free-flow travel time by the undisturbed trajectories (e.g., the one leaving the region at $t \approx 38$ s: 18 s. Hence, the delay is given by

$$\tau_{\rm delay} = (35 - 18) \, {\rm s} = \underline{17 \, {\rm s}}$$

This is the delay given by radio or navigation systems. However, it is *not* the time one drives through a congestion since this time includes the delay *and* the time needed in case of free traffic. *Therefore, it always feels as though the navigation systems err on the low side although this is not the case*

(f) Lane-changing intensity in $[0 \text{ s}, 80 \text{ s}] \times [20 \text{ m}, 120 \text{ m}]$: n=5 changes, so

$$r \approx \frac{4 \text{ changes}}{80 \text{ s} 100 \text{ m}} = 0.0005 \text{ changes/m/s} \approx \frac{1800 \text{ changes/km/h}}{1800 \text{ changes/km/h}}$$

"Friedrich List" Faculty of Transport and Traffic Sciences Chair of Econometrics and Statistics, esp. in the Transport Sector

Solution to Problem 1.2: Trajektoriendaten eines Verkehrsflusses mit Störung

- (a) Stop at a red traffic light. The thick black line represents the red phase.
- (b) Traffic demand is estimated by the *potential* inflow which is equal to the actual inflow for free traffic ("supply exceeds demand"). Hence, e.g., for x = -80 m and times t < 50 s: 5 lines per $20 \text{ s} = \underline{0.25 \text{ veh/s}} = \underline{900 \text{ veh/h}}$.
- (c) Select, e.g., the trajectory beginning at [-80 m, -16 s] and ending at [80 m, 0 s]

$$v_{\rm in} = 10 \,{\rm m/s} = \frac{36 \,{\rm km/h}}{10}$$

Density: One line per 40 m or $\rho=Q/v.$ Both leads to ρ =25 veh/km.

- (d) The "jam density" is, in this case, the density of the queue of waiting vehicles behind the red light: Eight lines per $40 \text{ m} \Rightarrow \rho_{\text{jam}} = 200 \text{ veh/km}$.
- (e) Outflow in the steady-state region to the right and above the blue symbols: It is easiest to just count the number of trajectories crossing a horizontal edge of a box (length 20 s) in this region: $Q_{\text{out}} = 10 \text{ veh}/20 \text{ s} = 0.5 \text{ veh/s} = 1800 \text{ veh/h}$

Speed in the outflow region: Lines parallel to inflow trajectories \Rightarrow Geschwindigkeit wie beim freien Upstream-Verkehr, da Linien zu jenen parallel: $V_{\text{out}} = V_{\text{in}} = 36 \text{ km/h}$

Outflow density by counting the trajectories along the vertical edges (length 40 m) of a box or by the hydrodynamic relation: $\rho_{out} = 50 \text{ veh/km}$.

(f) Propagation velocities of the upstream and downstream jam fronts either by the gradient of the chain of red and down symbols, respectively, or by the "shock-wave speed equation" (to be derived later):

Free
$$\rightarrow$$
 jam: $c^{\text{up}} = \frac{\Delta Q}{\Delta \rho} = \frac{-900 \text{Fz/h}}{175 \text{Fz/km}} = \frac{-5.14 \text{km/h.}}{-5.14 \text{km/h.}}$

Jam
$$\rightarrow$$
 free: $c^{\text{down}} = \frac{\Delta Q}{\Delta \rho} = \frac{1800 \text{Fz/h}}{-150 \text{Fz/km}} = \frac{-12 \text{km/h.}}{-12 \text{km/h.}}$

- (g) Travel time (T) with delay: $T_{\text{delay}} = 50 \text{ s.}$ Free-flow travel time: $T_{\text{free}} = 180 \text{ m}/10 \text{ m/s} = 18 \text{ s.}$ Hence $\tau_{\text{delay}} = T_{\text{delay}} - T_{\text{free}} = \underline{32 \text{ s}}$
- (h) Braking distance from the red symbols to the horizontal section of the trajectory: $s_b = 25 \text{ m}$. Acceleration distance from the stopped phase to the blue symbols: $s_a = 50 \text{ m}$. The speed before the braking and after the acceleration maneuvers is equal and given by v = 10 m/s (use SI units!!), so using the kinematic "school formula":

$$b = \frac{v^2}{2s_b} = \underline{2m/s^2}, \quad a = \frac{v^2}{2s_a} = \underline{1m/s^2}.$$

Alternatively direct calculation by the definition of acceleration as rate of speed change with Δt the durations of the phases:

$$a = \frac{\Delta V}{\Delta t} = \frac{10 \text{ m/s}}{10 \text{ s}} = \underline{1 \text{ m/s}^2}, \quad b = -\frac{\Delta V}{\Delta t} = -\frac{-10 \text{ m/s}}{5 \text{ s}} = \underline{2 \text{ m/s}^2}$$

Since $\Delta t = 5$ s and 10 s for the deceleration and acceleration phases, respectively, are hard to determine from the graphics, the school formula implies less estimation errors, in this case.